
The Functional Life Cycle Model and Its Automation: 
USEJT 

M. Hamilton and S. Zeldin 
Higher Order Software, Inc. 

Recently there has been an accelerated awareness of the 
urgent need for effective system development tools and 
techniques. Towards this end attempts have been made 
to develop standard languages for programming and stan- 
dard techniques for the front end of the development pro- 
cess. Further, there has even been talk of integrating the 
various processes within a system life cycle. Our thesis, 
here, is that although these are steps leading in the right 
direction, they are simply not enough. What we suggest is 
needed, rather, is a totally new life cycle model; it is 
based on pure functional needs. This is in contrast to the 
“event” driven model that has been forced into being 
based on constraints which are often unnecessary, 
wasteful, and error prone. The functional model, itself for- 
mally defined, not only includes formal techniques for de- 
fining the front end, but it also includes techniques which 
integrate by means of formal methods and automation 
that front end to the rest of the life cycle of a system. A 
fun~ional life cycle model has been defined. USE.IT, an 
implementation of this model, provides for an integrated 
and automated development process of a system. We dis- 
cuss, here, the HOS functional model, USE.IT, and the im- 
plications of their use. 

INTRODUCTION 

Software is a set of logical statements which can be and 
which is intended to be executed by a computer.’ Soft- 
ware is used for many purposes. In fact, software is 

‘The term software, here, is used in a conventional sense. There 
are other kinds of sets of logical statements, however. Some of these 
sets differ only in that they can but are not intended to be executed 
by a computer. Suppose, however, for a given period of time that a 
portion of “software” was never executed on a computer and a por- 
tion of “non software” was. From a practical point of view, wherein 
lies the difference? There are still other kinds of logical statements 
that cannot be directly executed by a computer although there is the 
possibility of simulating their behaviors with software. Generically 
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used within a particular ~mputer environment to help 
users of particular applications to prepare other soft- 
ware. We call a system which has been developed in 
terms of a computer(s) and its interrelated software 
systems an embedded system. That part of an embed- 
ded system which directly relates to the computer and 
its own embedded software is traditionally thought of 
as software. 

Indeed, a major aspect of our existence is software, 
since the success or failure of an embedded system is 
only as good as its software. Software can make or 
break an economy; it can make the difference between 
a good relationship and a bad relationship; it can make 
the difference between getting to a destination or not 
getting to one; it can make or break companies, proj- 
ects, or people; it can provide for smooth running bu- 
reaucracies or it can make them totally inoperable to 
the point of bringing eve~thing involved to a standstill; 
it could prevent or start a world war. In a sense, there- 
fore, it should not seem irresponsible to conclude that 
software is an integral part of that system which inher- 
ently controls society. But software depends on the cor- 
nerstone upon which its development is based. That cor- 
nerstone is the life cycle model. 

The life cycle model is the system or the set of pro- 
cedures, rules, tools, and techniques used to develop a 
system. A system developed by a particular life cycle 
model is one of its target systems. A successful life cy- 
cle model for developing embedded systems is a suc- 
cessful model for developing systems, in general; for 
what we are really talking about is an effective way to 

speaking, we use software to include the larger domain of a logical 
system which is computable of which software in a conventional 
sense is only a part. Our solutions for computable systems, however, 
cross over into the domain of solutions for non-computable systems 
as well. Thus, when we later discuss solutions for developing better 
“software” they can as well be used for developing better logical 
systems and vice versa. 
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think, to communicate our thoughts, and to practically 
realize those thoughts. The life cycle model includes a 
myriad of aspects that must first be understood and 
then integrated (Fig. 1). It starts with the definition of 
requirements for a particular set of users and ends with 
the final maintenance of a system that is operable by 
those users within their own environment. 

The life cycle model of a system can make the dif- 
ference between understanding a system and not un- 
derstanding it. It can make the difference as to whether 
it costs millions or billions of dollars to either develop it 
or to operate it. It can make the difference between that 
system working or not working. It is clear that a major 
concerted effort should be taken by embedded system 
developers to ensure that the life cycle model for devel- 
oping systems is an effective one. For, if such an effort 
is not made, the life cycle model will be controlling us, 
by being out of control, and not us the life cycle model. 

THE HISTORICAL LIFE CYCLE MODEL-A 
PROTOTYPE 

We view the conventional, or historical, model as a pro- 
totype. That is, it is useful from a historical point of 
view in that we can learn from it for developing the 
model of the future; but it should be viewed simply as 
that, and not as something to be taken seriously as the 
model of the future. 

The historical model established its basic structure 
almost overnight, over 20 years ago, in order to answer 
the needs of an extremely fast growing and accelerated 
hardware technology and its eager users. Its history was 

and has continued to be influenced not only by events 
and the timing of events surrounding hardware devel- 
opment but by the politics which surrounded it as well. 
As a result, patches to development techniques were 
added to patches of development techniques to adjust 
to the fast changing environment of hardware and its 
users. That is, there is a problem to be solved, solutions 
or partial solutions are attempted on an ad hoc basis; 
they are then incorporated and become firmly locked in 
as part of the life cycle model. Often, attempts have 
been made to force individuals to accommodate its in- 
adequacies into general solutions. Many solutions un- 
fortunately have often been implemention dependent in 
that they are wrapped up with a particular environ- 
ment’s peculiarities. And, of course, many of the solu- 
tions are wrapped up with different diverse environ- 
ments, making it difficult or impossible to integrate 
them when it comes necessary to do so. 

The historical model is a ready candidate on which 
to perform a “fresh start.” In order to start over one 
must remove any preconceived notions with respect to 
how the existing life cycle model accomplishes its job. 
He only cares about what it should accomplish. Such a 
commonsense, or functional approach, is helpful in at- 
tempting to understand any phenomenon. Here, useful 
functions are selected, relationships between these 
functions are determined (and resolved if they are in- 
consistent), and redundant functions are eliminated 
[ 11. Once this process has been performed it is easier to 
get an idea of what functions are missing. Although one 
could interpret such an approach as a relational one, 
the relations between functions can ultimately be un- 
derstood in terms of functions. 

STANDARDS Figure 1. Life cycle model components. 
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Some Shortfalls of the Historical Life Cycle Model 

It is not an unknown fact that the historical life cycle 
model has serious problems. Over the years, we have 
collected a list of complaints resulting from experiences 
of ourselves and others which illustrate this fact further 
(Fig. 2). The same complaints exist today as they did 
many years ago. But all is not lost. We have an oppor- 
tunity to observe just about any type of failure (and to 
be fair, some successes) imaginable with all of the col- 
lective experiences behind us with the use of this pro- 
totype model. In the process of doing so, it is helpful to 
determine why certain procedures exist. This some- 
times helps to justify, or at least give a warmer feeling 
for, the elimination of procedures which functionally do 
not make sense within the context of an overall system- 
atic process. Do they exist because other procedures 
which were not working made new and additional pro- 
cedures necessary as a quick fix? Do they exist because 
of a peculiar trait that a particular hardware architec- 
ture had? Do they exist because of a peculiar trait that 
a particular human being had? Do they exist because 
someone many years ago solved a particular problem in 
a certain way and so everyone else did it that way be- 
cause that is the only way it had been done before? Do 
they exist because too many people are already doing it 
that way to make the investment to change? Do they 
exist because that is the way people were trained to do 
it? Do they exist because people are afraid of change? 
Do they exist because . . .? The answer is “yes” in all 
cases. 

It was not until we defined a functional model that 
we understood the problems of the historical model as 
we do now. This is due to the fact that the functional 
model explicitly pointed out problem areas which were 
not obvious to us before. It also suggested solutions not 
theretofore thought possible. In the historical model 
(Fig. 3) there are manual processes during and between 
all phases of development. Manual processes encourage 
the introduction of new errors into a target system. 
Many of the processes of the historical model are can- 
didates for obsolescence. When manual processes are 
automated, for example, those processes established to 
support each of the manual processes can be elimi- 
nated. Unnecessary algorithms for each target system 
are developed and maintained, sometimes for years. A 
proliferation of sophisticated tools has resulted in order 
to either answer a particular machine environment’s 
needs or to help manage the horrendous problems that 
compound developers’ problems. These include such 
tools as higher order languages, compilers, operating 
systems, and verification aids. Operating systems, for 
example, are often worrying about uncontrolled inter- 
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rupts, deadly embraces, etc. that they would not be con- 
cerned with if the system, so defined, was defined cor- 
rectly in the first place. Both compilers and operating 
systems concern themselves with complex resource al- 
location algorithms they should have no concern for; 
again this would not need to be the case if the systems 
they dealt with were defined differently. Verification 
tools test over and over again during every system dy- 
namic run for unnecessary errors. In fact, the very use 
of a technique can eliminate the possibility of particular 
kinds of errors from even happening [ 21. Again, many 
costly tools have been developed and are now continu- 
ously maintained and used, unnecessarily. 

Usually a target system in the historical model is de- 
scribed in a different language for each different phase 
of its development. Why? Probably because as each 
new phase throughout the evolution of the historical 
model was thought to be necessary, those creating that 
phase used or made up their own language. Not only is 
it necessary to translate a target system from the lan- 
guage of one phase to a language of another phase, but 
once a given phase of a target system is defined, it must 
be proven to correspond to a previous phase. This has 
become an extremely difficult process. Why? Probably 
because the target system in each of these phases is de- 
fined in different languages! 

The historical model is inefficient in its ordering of 
processes. It, for example, leaves the majority of veri- 
fication and validation until the end. As a result errors 
live in the target system longer than necessary and 
these errors encourage new errors. One reason for this 
is that the “language” has not really been formal 
enough until the last phase (i.e., coding in software) to 
verify a system defined in terms of that language. Sur- 
prises then occur at the very end of development when 
it is often too late to do anything about them. Or, a 
whole new development step, throughout all the phases, 
must be taken to “fix” a problem, if it is found. 

Since the historical model is not functionally under- 
stood, those systems developed with it are not function- 
ally understood as well. As a result, it is not known 
when an object within a system can be a static entity or 
a “constant” within a development process. When, for 
example, is it no longer necessary to verify an object? 
Again, everything must be treated as an unknown until 
the end. Thus, dynamic verification must always be per- 
formed at its maximum. And this is impossible in large 
complex systems. 

The languages in the historical life cycle model are 
traditionally syntax-oriented (i.e., emphasis on how it is 
being said, not on what is being said) and each lan- 
guage has its own fixed syntax. The fact is, everytime a 
new syntax arrived, a new semantics method would ar- 
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rive as well. A fixed syntax is not necessary to maintain 
a desirable state; a fixed semantics is. In a historical 
method, the opposite seems to hold true. 

Within a historical model, the definition of require- 
ments for a system invariably contains system imple- 
mentation details which depend on either the type of 
language it will be implemented in or which depend on 
the type of computer environment it will be executed 
in. Thus, if there is a new language or a new computer 
introduced into the target system environment, a target 
system has to be completely developed again from 
scratch. Such a situation is indeed wasteful. 

Attempts to accommodate the Historical Life Cycle 
Model 

Several attempts have been made by software tool de- 
velopers to alleviate the problems of embedded system 
developments. In fact in doing so, all of these tool de- 
velopers are attempting to alleviate the problems of the 
existing historical model. They, however, in attempting 
to provide solutions, make the assumption that they 
must include as part of their requirements the existence 
of the historical model as a given. 

For example, take the requirements phase, in the 
traditional sense, which usually tries to address the 
problem of user needs from the total system point of 
view. Typical techniques that attempt to address the re- 
quirements phase are SADT [3], and PSL~PSA [4]. The 
use of these techniques, however, can result in error 
prone requirements and as a result these techniques do 
not lend themselves as either reliable requirements or 
as a first step towards reliable code. 

When system requirements are “completed,” usu- 
ally marked by the appearance of a requirements “doc- 
ument,” the parts of the system informally allocated to 
software are used as input to the software specification 
phase. The specification phase deals with software, as 
opposed to system, requirements. Here, the designer 
concentrates on defining the target system a little bit 
better, adding a few requirements for how best to se- 
quence operations, perhaps what computer to use, or 
other “high level” resource allocation consideration. 
There are, today, a variety of techniques that are used 
for this phase: the SREM method of the SDS [ 51, War- 
nier Orr [ 61, HDM [7], Information Hiding [ 81, Struc- 
tured Analysis/Design [9] CADES [IO], etc. 

Each successive phase from design to code adds 
more and more detail to both the definition of the target 
system and to the resource allocation of that target sys- 
tem to a computer. Of course, the fact that the resource 
allocation process itself must be defined (and itself re- 
source allocated) only adds to the problems of what to 
do at each phase. Recently, tools have been introduced 

to enable users to create partial applications automati- 
cally [ 1 l-l 51. However, complex logical and data ma- 
nipulation functions still must be handcoded. To help 
alleviate the problems here, programs are augmented 
by sophisticated notational schemes, such as [ 16, 171, 
beyond the patience (and time constraints) of the av- 
erage programmer, or programs are abstracted by sym- 
bolic execution techniques [ 18-201, rather than con- 
ceived of abstractly to begin with, or programs are 
subjected to time consuming test generation programs 
[21, 221 rather than concentrating on maximizing 
static analysis. 

Similarly, there are other tools and techniques for 
use in both the earlier and later phases of the historical 
model. More often than not, these methods exist as a 
result of or for supporting manual processes. Thus, they 
are used, for example, to find errors. In fact, the errors 
would not even be there if the other methods resulting 
in the errors had accomplished the results they could 
have accomplished in the first place. 

It is true that some of these tools, or combinations 
thereof, partially solve the problems of parts of the his- 
torical model. But, there is no integrated set of tools 
within the categories discussed above which tackles the 
whole problem. The root problem that has confronted 
software tool developers is that they are relating to and 
depending on an inferior life cycle model. The solution 
is not to support the historical model but rather to learn 
from it and then to replace it. With such an approach, 
history is used to support and not control an evolving 
life cycle model. This is as it should be. 

STEPS TOWARDS THE FUNCTIONAL LIFE CYCLE 
MODEL 

Efforts towards improving software techniques have 
concentrated, until very recently, on better ways to talk 
to a computer as opposed to better ways for users and 
developers to talk to themselves or to each other. If we 
review the evolutionary nature of software development 
techniques (Fig. 4) it is apparent that the first and sec- 
ond generations of software development were focused 
around how to communicate with the computer hard- 
ware. By the early 70’s however, both users and devel- 
opers of software were keenly aware of the magnitude 
of problems that were possible in embedded systems. 
These problems were due to unreliable software and to 
lack of formal means for users to communicate to each 
other or their developers. The result was a split of ef- 
forts in both directions, during the third generation, 
where some people were concentrating on making more 
reliable higher order programming languages and oth- 
ers were concentrating on making more user-friendly 
requirements/specifications languages. But the more 



FO
CU

S 
O

F 

AP
PR

O
AC

H 

__
__

__
 I _

__
__

 

DU
AL

 

RE
LA

T 
1 

O
NS

 

_-
 --

-_
__

__
 -

_ 

TI
M

E 

FR
AM

E 

1s
~ 

G
EN

ER
AT

IO
N

 

CO
M

PU
TE

R 

AS
SE

M
BL

ER
 

AS
SE

M
BL

Y 

LA
NG

IJ
AG

E 

_-
__

__
__

__
__

__
__

 

19
50

’S
 

TR
AD

IT
IO

NA
L 

AP
PR

O
AC

H 

ZN
D 

G
EN

ER
AT

IO
N 

M
AK

E 
IT

 
EA

SI
ER

 
FO

R 
PR

O
G

RA
M

tIE
R 

TO
 

TA
LK

 
TO

 
CO

M
PU

TE
R 

__
__

__
__

__
__

__
__

 

C
O

M
P 

lL
ER

 

I 

HI
G

HE
R 

O
RD

ER
 

LA
NG

UA
G

E 
(H

O
L)

 

__
__

__
__

__
__

__
__

 

19
60

’s
 

SA
D

 
G

EN
ER

AT
 

I 
O

N
 

CO
NC

EN
TR

AT
E 

O
N 

RE
Ll

AB
IL

lT
Y 

AN
D 

CO
ST

 
SA

VI
NG

S 

IN
 

PR
O

G
RA

M
M

IN
G

 

PR
O

CE
SS

 

PR
EP

RO
CE

SS
O

RS
 

AN
D 

‘S
TR

UC
TU

RE
DI

 

CO
M

PI
LE

RS
 t 

ST
R

U
C

TU
R

ED
 

PR
O

G
R

AM
M

IN
G

 

__
__

-_
_-

-_
__

__
__

 

CO
NC

EN
TR

AT
E 

O
N 

TA
LK

IN
G

 
TO

 
TH

E 

US
ER

 

-”
 

I 
RE

Q
UI

RE
M

EN
TS

/ 
SP

EC
IF

IC
AT

IO
NS

 

LA
NG

UA
G

ES
 

EA
R

LY
 

19
70

’s
 

~T
H

 
G

EN
ER

AT
IO

N
 

C
O

N
C

EN
TR

AT
E 

O
N

 
R

EL
IA

BI
LI

TY
 

AN
 

C
O

ST
 

SA
VI

N
G

S 
f 

FR
O

N
T-

EN
D

 

H
O

S 
AN

AL
YZ

ER
 

LA
 

--_
-_

-_
__

 

T 
E

 
19

70
’S

 

AX
ES

 

FU
N

C
TI

O
N

AL
 

G
EN

ER
AT

 
i 
01

1 

H
AR

O
W

AR
E/

SO
FT

- 
W

AR
E/

F 
IR

M
W

AR
E 

BE
C

O
M

E 
IN

TE
K-

 
C

H
AN

G
EA

BL
E 

(A
 

FU
N

C
TI

O
N

AL
 

M
O

D
EL

) 

*A
 

PR
O

BL
EM

 
AR

EA
 

FO
R

 
~S

YN
TA

C
TI

C
AL

~ 
O

R
IE

N
TE

D
 

FR
O

N
T-

EN
D

 
TE

C
H

N
IQ

U
ES

 
IS

 
D

EM
O

N
ST

R
AT

ED
 

BY
 

TH
E 

FA
C

T 
TH

AT
 

N
O

 
FO

R
#A

L 
SE

M
AN

TI
C

S 
E

X
IS

T
S

 

F
ig

ur
e 

4.
 

T
he

 e
vo

lu
tio

na
ry

 
na

tu
re

 
of

 s
of

tw
ar

e 
de

ve
lo

pm
en

t 
te

ch
ni

qu
es

. 

U
SE

. 
IT

 

I 

R
EQ

U
IR

EM
EN

TS
 

DE
RI

VE
II 

FR
O

ri 
AX

ES
 

19
80

’s
 



32 M. Hamilton and S. Zeldin 

reliable higher order languages were not user-friendly 
and they were still not reliable enough, and the user 
friendly languages were friendly to select groups and 
they were not reliable at all. It was at this same time 
that our own staff was concentrating on both aspects of 
the problem and as a result (see fourth generation) 
came up with a formal requirements definition lan- 
guage which was intended both to be used at all levels 
of communication, including the user level, and to ad- 
dress the issues of reliabifity, not heretofore addressed, 
pa~icularly at the front end. It was now possible to pro- 
ceed with the development of the model for the func- 
tional generation. With the functional generation, one 
is able to define systems, whether they be hardware, 
software, humanware, or some combination, by merely 
collecting modules from a library. There would only be 
the choice of which “what” should be done and which 
“how” it should be done by. Once such a choice is 
made, the “what” and the “how” can be collected from 
the library of system modules. 

P~PERTI~S OF FUNCTIONAL GENERATION 
SYSTEMS 

There is a growing awareness, today, of the need for 
quality metrics with respect to techniques and tools 
used for systems development [23-251. In the process 
of defining the functional life cycle model we found it 
necessary to establish a set of properties for systems in 
general. Towards this end, we defined a checklist of de- 
sirable properties for a methodology’ [2], properties of 
systems from a user point of view [26], properties of 
systems from a requirements definition point of view 
12’71, and properties of systems as criteria to evaluate 
development methods [28]. 

The properties of concern here are those properties 
that can be used to measure the adequacy of a solution 
to the problem of developing systems. The result of such 
a solution is an effective life cycle model for developing 
a system. The output of an effective life cycle model is 
a well-formed system. 

First and foremost, a system must be scientifically 
based (Table 1). It follows, then, that an effective sys- 
tem for developing systems, including the well-formed 
systems that are developed with the developmental sys- 
tem, must be scientifically based. The system for devel- 
oping systems must formally address practical solutions 
to problems of development (e.g., elimination of errors, 
avoiding constraints to creativity, eliminating unneces- 
sary steps, etc.) including the practical solution of pro- 

“‘Methodology” is used here in the general sense, i.e., a set of 
rules that aid a designer in obtaining a solution to a problem. 

Table 1. Scientific System Properties 

Property Definition 

Formal 

Practical 

If a system is consistent and logically complete, 
that system is formal 

To be practical, a system must have 
applicability to the problem to be solved 
(i.e., experimental results) 

viding a means to define scientific-based systems. What 
this means is that any effective deveIopment system 
must be able to provide a means for expressing the 
practical properties of any particular application area 
(financial, avionics, communications, manufacturing, 
etc.) in a formal way. However, an effective develop 
ment system cannot guarantee that the designer that 
uses it will capture all of the practical properties of that 
designer’s application. An effective development system 
can only guarantee the designer the formal and prac- 
tical properties of a well-formed system. 

By formal, we mean a system that has the properties 
shown in Table 2. For example, a method for system 
development may be consistent and yet apply to only a 
part of the development process. That same method 
may be considered formal if it completely addresses the 
part of the development process it intended to address. 
However, if that same method is intended to address 
the entire development process and succeeds to ad- 
dress only one part (or parts of several parts) it may be 
consistent, but not logically complete and therefore not 
formal. On the other hand, if a method is inconsistent, 
then there is no way to show if it is logically complete. 
Subsequently, such a system is considered informal. 

By practical, we mean a system that has the prop- 
erties shown in Table 3. These practical properties 
(from the point of view of a system of properties) must 
themselves be formally defined and practically based. 
The formal properties in Table 3 are themselves based 
on the practical requirements for methods which came 

Table 2. The Components of Formal 

Property Definition 

consistent 

Logically 
complete 

A system is consistent if it can be shown that 
no assumption of the system contradicts 
any other assumption of that system. One 
way to show consistency is to develop a 
model for the assumptions of the system 
(e.g., the three primitive control structures 
of HOS are models of the HOS axioms). 

A system is logically complete if the 
assumptions of the system completely 
define a given set of properties. A logically 
complete system has a semantic basis (i.e., 
a way of expressing the meaning of system 
objects. 
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about from the practical needs based on problems of 
systems development indicated in the last column of 
Table 3. If one considers the type of process around 
which rules or standards are necessary, it is either one 
of pulling apart or one of putting together objects. The 
abstraction, integration, and applicative properties all 
imply a process of going from many objects to one ob- 
ject; de~om~sition, modularity, and computable all 
imply a process of going from one object to many 
objects. 

Abstraction and decomposition are inverse proper- 
ties. In the decomposition of a function, for example, 
there are many possibilities for a chosen set of subfunc- 
tions each of which collectively replace that function. 
Once a set has been chosen, the function is decomposed. 
Given only the sets of subfunctions, however, to start 
with, one must abstract in order to find a function 
which satisfies each collection of subfunctions. Decom- 
position is “top-down” (we start, assuming the “top,” 
and work our way down to communicate at the “bot- 
tom”) and abstraction is “bottom-up,” (we start, as- 
suming the existence of the “bottom” and work our way 

Table 3. Practical System Properties 

up to communicate at the “top”). We need rules on the 
way up and rules on the way down. And, in the end, we 
need to understand both the top and the bottom. Both 
abstraction and decomposition are made up of other 
properties. Table 4 is an example of component prop- 
erties for abstraction. 

Integration and modularity are also inverse proper- 
ties. The integration, for example, of one function with 
another implies that one of those functions has influ- 
ence over the other (e.g., communication between func- 
tions, or one function affects another’s timing). The 
modularity property ensures that each function in the 
integrated system is able to be selected as a separate 
entity and stand alone as a self-contained system. 
Proper integration calls for modular components while 
the development of each modular component calls for a 
means to integrate the subcomponents of that modular 
component. Practically, “reusable” software compo- 
nents have not been possible in traditional systems. The 
fear of uncovering new interface errors by uncoupling 
components embedded in larger systems has made even 
static reconfiguration difficult, if not impossible. How- 

Formal 
property Definition 

Practical method 
requirements 

Practical user 
requirements 

Abstraction 

Decomposition 

Abstraction refers to the ability 
to recognize commonality 
among a set of objects and 
then to identify a unique 
object for which any 
member of the set can stand 
for that unique object 

Decomposition refers to the 
ability to identify one of the 
possible sets of subordinates 
that can stand for a unique 
object 

Rules for deriving new 
definitions ultimately 
in terms of the same 
primitive mechanisms 

Ehminate ambi~ity, 
simpiify complexity, 

Rules for separating and 
relating the “what” 
and the “how” 

Integration Integration refers to the ability Reconfigure component 

Modularity 

to connect system 
components. 

Modularity refers to the ability 
to separate system 
components. 

environments 

Reconfigure individual 
components 

Eliminate interface errors, 
flexibility, reusable 

Applicative 

Computable 

Applicative refers to functional 
in the mathematical context 
of function, i.e., the 
relationship of input to 
output. The input object 
exists. The output object 
exists. The function is the 
relation such that each input 
corresponds to one output. 

If an algorithm can be 
established to allocate to 
each unique definition object 
so that it is set up to execute 
correctly on a machine then 
that definition is computable. 

Functional semantics 

Functional instantiation 

Eliminate unnecessary 
error-prone steps, 
flexibility, automation 



Table 4. Component Properties of Abstraction 

Formal property Definition 
Practical method 

requirements Practical user requirements 

Data 
behavior 

Data behavior refers to the 
common relatio~hips that hold 
between members of a given 
set of objects regardless of the 
components or parts, of the 
objects. For example, the linear 
ordering relationship among 
members of the data type time 
is a behaviorial characteristic 
of time. 

Standard primitive objects Identify 

Data 
structure 

Formal data behavior implies that 
all derived data relationships 
must be able to be traced to 
common semantic primitives. 

Data structure refers to the 
common relationships among 
~m~nents, or parts of an 
object. Abstraction of data 
structure refers to the ability to 
define common patterns 
between components of type 
members without specifying 
the particular instances that fit 
the pattern, e.g., a rational can 
always be replaced by a data 
structure of two integers. 

A data structure is consistent if a 
function can be defined from 
type to structure. 

Standard primitive data 
relationships 

Identify object 
impIementation 
alternatives 

Functional 
behavior 

For a data structure to be 
logically complete, a11 derived 
component relatio~hips must 
be able to be traced to the 
common semantic constraints 
of the set of objects for which 
it is a model. 

Functional behavior refers to the 
relationship between the input 
and the output of a function. 
Abstraction of functional 
behavior refers to the ability to 
state that relationship between 
input and output without 
specifying an algorithm for 
how that functional 
relationship will get 
a~mplished. 

Standard primitive Identify the “bottom” of a 
operations hierarchy 

Functional 
structure 

If the same input instance always 
produces the same output 
instance then the functional 
behavior is consistent. 

For functional behavior to be 
logically complete each input 
instance must produce an 
output instance in accordance 
with the input/output 
properties. 

Functional structure refers to the 
relationship between functions. 
Abstraction of functional 
structure refers to the ability to 
define ~mmon patterns 
between functions without 
specifying the particular 
functions that fit the patterns 
or the particular execution 
model. 

Standard primitive 
functional relationships 

Identify common functional 
patterns 

For functional structure to be 
formal, all derived functional 
relationships must be able to be 
traced to common semantics 
primitives. 
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with properties of integ~tio~ and m~ularity not only 
static reconfiguration, but also dynamic reconfiguration 
is not only possible, but is also practical. Again, both 
integration and modularity are made up of other prop- 
erties. Table 5 is an example of component properties 
for modularity. 

Whereas applicative is the property of relating one 
set of instances (domain) to another set of instances 
(range); computable is the property of relating these in- 

Table 5. Component Properties for Moduiarity 

stances one pair at a time. That is, if you separate out 
each “component” of the applicative mode (i.e., speci- 
fication mode) you get the computable mode (i.e., exe- 
cution mode): conversely if you put together all com- 
ponents of the computable mode and do them “all at 
once” (i.e., all instances concurrently) you get the ap 
plicative mode. Practically, we need a means to deter- 
mine what functions are necessary (and, once deter- 
mined, identify which ones can be automated) and 

Formal property 

User 
independent 

Application 
independent 

Definition 

The ability to define a system with 
properties from which different 
user models can be derived. 
That is, such a system has no 
knowledge of its users just as a 
car does not need to know who 
is driving it to run, or an “add” 
instruction does not need to 
know about the “square” or 
“sum” users 

The ability to define any type of 
system 

Practical method 
requirements 

Diverse users 

Diverse appli~tion 
environments 

Practical user requirements 

Design top-down or ~ttom-up, 
maintain a multiuser 
evolving library 

intent 
inde~ndent 

Resource 
~nde~ndent 

The ability to define a system with 
analyzable properties from 
which different models with 
those properties can be verified. 

Diverse readership 

The ability to define a system with 
functional properties from 
which different resource 
allocation models can be 
assigned (e.g., one allocation 
model may be time optimized, 
another memory optimized). 

The ability to define a system with 
computable properties from 
which different models for 
execution can be derived. A 
system can be formally 
computable and yet depend on 
a particular machine type (e.g., 
the sequential nature of the 
structured programming 
execution-how control 
structures) or a particular 
machine of a type (e.g., 
company x, model y). If, 
however, we can establish 
~mputational abstractions, 
different models for the 
execution can be derived (e.g., 
the primitive control structures 
of HOS allow for parallel, 
sequential or multi- 
programmed execution models). 

The ability to define a system with 
semantic properties from which 
different syntactic models can 
be derived. 

Diverse optimization of 
resource utilization 

Diverse hardware 
environments 

Eliminates constraints on 
creativity, eliminates need 
to learn a new method for 
each application area 

Efiminates the need to 
“‘return-to the author” for 
clarification or tie assertion 
statements of intent to 
definitions 

Eliminates the need to tie 
requirements to resources 

Transport from machine to 
machine 

Machine 
independent 

Syntax 
independent 

Diverse syntactic 
models 

Enhance other methods, 
encourage user-friendliness 
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Table 6. ProDerties of HOS Svstems 

Access rights 

Ordering 

Domain 
identification 

Maintain data security 

Formal 
property 

Replacement 

Definition 

The ability to establish a relation in 
a set of objects so that any 
element can be substituted for 
any other element with respect 
to a unique object defined by 
that relation. 

Practical method 
requirements 

Standards for structure 
integrity 

Practical user requirements 

Assures the “bow” conforms to 
the “what” 

The ability to locate an element of 
a given set of variables and once 
located, the ability to reference 
or assign the value of said 
element. 

Standards for data flow 

The ability to establish a relation in 
a set of functions so that any two 
function elements are 

Standards for timing 
flow 

comparable in that one of said 
elements preceeds the other said 
element. 

The ability to predict if a function 
will or will not be able to 
perform its intended function 
and to identify unintended from 
intended phenomena as part of a 
function definition. 

Standards for error 
detection and 
recovery 

Inherently be able to identify what 
can and cannot be done in 
parallel, while maintaining the 
ability to unambiguously decide 
what comes first in cases of 
potential conflict. 

Be prepared for the unexpected, 
provide outputs 

what functions are sufficient (and, once determined, 
eliminate the redundant and obsolete ones). Only by 
separating the applicative property from the computa- 
ble property can we find a means to deal with each 
effectively. 

Properties of HOS systems (Table 6) provide rules 
for obtaining the practical system properties shown in 
Table 3. These properties, in turn, are used to define 
properties of the HOS life cycle model (Table 7). This 

ensures that systems developed with the life cycle model 
will have the same properties as those systems from 
which they came. 

We have used these properties as metrics for evalu- 
ating development methods that span various aspects of 
the development life cycle [28]. In addition to using 
these properties as metrics for development techniques, 
there are other advantages to having available such 
properties that, on first glance, may not be so obvious. 

Table 7. Properties of HOS Life Cycle 

Formal 
property 

Management 

Definition 

Management provides for control 
of a system. Control 
encompasses which functions 
are to be performed, input and 
output rights to data, the 
ordering of functions, the 
relationship between input and 
output, and what it means to 
have improper input. 
Consistent control provides for 
the ability to adhere to each 
aspect of control in a given 
system without any aspect 
conflicting with any other 
aspect of control. Logically 
complete with respect to 
control provides for the ability 
to trace the chain of command 
with respect to each aspect of 
control from level to level and 
layer to layer of a hierarchy. 

Practical method requirements 

Control, goal-driven commands 

Practical user 
requirements 

Eliminate interface errors 
in chain-of-command 
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Table 7. (continued) 

Formal 
property Definition Practical method requirements 

Practical user 
requirements 

Definition 

Analysis 

Resource 
allocation 

Execution 

Documentation 

A definition of a system states 
the meaning of that system. A 
consistent definition of a 
system is one in which the 
meaning of that system can 
only be interpreted in one 
way. A logically complete 
system definition is one in 
which each system object can 
be traced to primitive 
semantic objects. 

Rapid design rapid prototyping Eliminate interface errors 
among users and 
developers 

Analysis provides for the 
capability to determine if a 
target system is a model of the 
method used for definition of 
that target system. Consistent 
analysis implies that a given 
target system will always 
compare to the method used 
for definition of that target 
system in the same way. 
Logically complete analysis 
provides for the ability to 
trace a target system as a 
model of the method used for 
definition of that target 
system. 

Eliminate interface errors 
before implementation 

A resource allocation assigns 
objects to names and names to 
objects. A consistent allocation 
maintains the properties of 
definition with respect to 
assignments. Logically 
complete allocation provides 
for the ability to trace objects 
to names and names to objects 
with respect to properties of 
definition. 

Automatic programming Eliminate interface errors 
between definition and 
machine environment 

Execution provides for the 
instantiation of a target 
system. Consistent execution 
implies that a given model of a 
target system will always be 
performed in the same way. 
Logically complete execution 
provides for the ability to 
trace an object as a model of a 
target system. 

The system works Eliminate interface errors 
in real-time 

Documentation provides for a 
description of a system. A 
descrjption is a symbolic 
representation of a system- 
one step removed from the 
system itself. A consistent 
description is one in which the 
meaning of the symbols used 
to define a system can be 
interpreted in one way, A 
logically complete description 
provides a means to trace the 
names of system objects with 
respect to properties of 
symbols 

Eliminate interface errors 
in describing what is 
really there 
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For example, arguments for or against a particular 
brand of automation can be evaIuated by determining 
the necessity or sufiiciency of automating a particular 
process. A start in this direction (with respect to tools 
such as HOLs, PDLs, simulators, verification systems, 
etc.) can be found in [ 281. 

THE FUNCTIONAL LIFE CYCLE MODEL 

The functional life cycle model is a formal model of the 
functions and the relationships between those functions 
which exisf in a system for effectively developing a sys- 
tem. This could be a model for developing a software 
system, a hardware system, a system of people, or some 
combination of software, hardware, and people [27- 
30]. 

The functional life cycle model is based on the HOS 
theory [ 1,2]. HOS, a systems theory based on analysis 
of large complex systems development, concerns, 
among other aspects, the definition of systems so as to 
eliminate data and timing conflicts. Systems, developed 
using this model, are themselves viewed by the model 
as data with respect to that model’s functions. In this 

Figure 5. A definition of a functional life cycle process. 

M. Hamilton and S. Zeldin 

regard, each system that is developed with an HOS 
model is inherently forced to be defined in terms of the 
HOS theory in order to maintain the consistency and 
logical completeness properties of the model in the ex- 
ecution phase of its own development. 

AN EXAMPLE OF THE FUNCTIONAL LIFE CYCLE 
MODEL 

The example of the functional life cycle model de- 
scribed here has six major functions [28]. They are 
Manage, Define, Analyze, Resource Allocate, Execute, 
and Document. Although the function labeled “Define” 
in Figure 5 is a de~nitional process with respect to the 
target system being developed by the model, each of the 
functions in Figure 5 is, generically speaking, a defini- 
tional process, in its own right. That is, a definition re- 
lates one object to another (e.g., relating a value to its 
type). But, with respect to each given process, there are 
certain relationships with other processes that have to 
do with a development process [27]. That is, once a tar- 
get system definition is completed, the target system is 
related to other systems within the target system envi- 
ronment in order to complete its development. The re- 
lations themselves are other systems within the target 
system environment. Specifically, once a target system 
is defined, it is related to a set of instances, or their 

NOTE: THE “PENCIL MARKS” ON THIS PIECE OF PAPER WHICH INCLUDES WORDS, 

BOXES, ARROWS, ETC, REPRESENT THE DOCUMENTATION OF THIS PARTICULAR 

VIEWPOINT OF THE MAJOR FUNCTIONS IN THE FUNCTIONAL LIFE CYCLE 

PROCESS, AS WELL AS OF THIS PARTICULAR VIEWPOINT OF THE ENTIRE 

LIFE CYCLE. THAT IS 

I- 1 r I 
” f 

\ 

& )' = DOCUMENT (a) 

THE WHOLE DIAGRAM REPRESENTS A DEFINITlON OF THE LIFE CYCLE WHICH 

INCLUDES A PROCESS FOR THE DEFINITION OF THE TARGET SYSTEM. 
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equivalent, (or analyzed’), to “test it out,” related to a 
machine architecture (or resource allocated4) to “im- 
plement it,” related to instantiations (or executed’) to 
“run it,” and related to a communications vehicle to de- 
scribe (or document) it. That which “integrates” or re- 
lates relationships between these processes is the 
management. 

Again, generically speaking, every process in the life 
cycle could be viewed not only as one of definition but 
as one of management or of verification or of resource 
allocation or of execution or of documentation, since 
they are all that when viewed with respect to the par- 
ticular relevant target system as a definition (Fig. 6). 
This is the very reason why people have arguments over 
such things as requirements, specifications, and imple- 
mentations, since one person’s specifications are an- 
other person’s requirements. Similarly, one person’s 

3The analysis process involves relating “what if” instances of the 
target system environment (or the equivalent of having done so) to 
the target system. An equivalent process might include a guarantee 
that a set of rules were followed to put together a given system struc- 
ture. (An analysis process, for example, would ensure that whether 
or not a bus took off from New Jersey or Boston, it would still arrive 
at its designated location, that is, if that was a requirement.) 

4A resource allocation process relates the target system to a ma- 
chine architecture system (or its equivalent). The machine architec- 
ture will then become the place of execution of the target system. It 
could be a computer, an operating system, or an algorithm within 
which the target system resides. An assignment of a procedure to 
memory is an example of a resource allocation process. 

‘The execution process relates instances of the target system en- 
vironment to a resource allocated target system. The execution pro- 
cess would actively invoke the operation of the system by a user (real 
or simulated). 

specifications are another person’s implementation. 
What is important, then, is to first agree on the target 
system in question and then to agree on what its relative 
phases of development are. Take, for example, the def- 
inition of a target system. Within that definition each 
object has to be acknowledged and related to a type 
(definition), related to “what ifs” to see if it’s the right 
relationship between the object and its type (verifica- 
tion of that definition), related to a “machine” (re- 
source allocation of that verified definition), related to 
instantiations (execution of the resource allocated, ver- 
ified definition). Take again, for example, the definition 
of that same target system. It, itself, could be an in- 
stantiation of another system. Now it is an input to the 
execution process of that other system. All of these def- 
initions, therefore, are what they are as a result of each 
point of view of that definition with respect to its 
relationships. 

The entire life cycle model, if viewed functionally, 
has to do with knowing how and when to recognize a 
problem (or part of a problem) to be solved and then 
solving it. A major emphasis is placed on being able to 
tell the difference between a problem and its solutions. 
This is part of what we refer to as “keeping the layers 
straight.” Understanding each point of view of an ob- 
ject and its relationships goes a long way towards un- 

Figure 6. Every life cycle process is dependent on viewpoint 
and in terms of each other: The definition of the life cycle 
model is made up of definitions in terms of the life cycle 
model. 
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derstanding a particular “what” with respect to its 
“bows” which themselves are “whats” in their own 
rights. Then the issue of differentiating between a prob- 
lem and its solution becomes one of relating one defi- 
nition to another. In the continuing “matching” pro- 
cess, the relationship of each object that was related 
(where that relationship is itself an object) can then it- 
self be related until a system is finally complete in its 
development. Relationships are defined in terms of 
more primitive relationships. Once previously defined 
relationships are verified, a new relationship, defined in 
terms of the more primitive ones, need only be verified 
at its own level of the system definition. In such a way, 
structure integrity, as the structure evolves, can always 
be maintained [27]. 

In the functional life cycle model, the definition is 
implementation independent and execution indepen- 
dent. These processes appear to be sequential (i.e., de- 
fine, analyze, resource allocate, execute) but they are 
not necessarily sequential for it is possible, for example, 
to set up resource allocation and execution of the target 
system concurrently or provide outputs before inputs 
when “executing” the model itself. 

USE.IT: THE AUTOMATION OF THE FUNCTIONAL 
LIFE CYCLE MODEL 

USEIT is an automation of the functional model de- 
scribed above. USEIT is an integrated family of tools 
for automating a system’s life cycle (Fig. 7). That is, 
there is no need for manual intervention in a system 
development process once a set of requirements has 
been stated by a user. Backus alludes to, according to 
[3 11, for the future, a functional front-end approach 
that is inherently computable. USEIT is currently able 
to accomplish this task because of the particular set of 

Figure 7. Functional life cycle process with USE-IT. 
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properties inherent in HOS-based systems [27]. 
USE.IT can be considered as a “development machine” 
in that processes in a life cycle, traditionally thought of 
as manual ones, can now be automated. In fact, the def- 
inition process, itself, is supported by automation with 
USE.IT. That is, USE.IT will develop a system once 
you tell it what you want to do-correctly, that is. It 
will not tell you what you want to do. It will, however, 
help you tell it what you want to do. USEIT and the 
systems developed with it are all based on the HOS 
theory. 

The functional life cycle process with USE.IT works 
as follows. 

AXES: Define the Requirements 

The first step is to define the requirements. This step is 
performed with the requirements definition language 
AXES or with AXES library mechanisms which have 
themselves been defined with AXES [32,33]. At this 
time the user, if he wishes, is supported by interactive 
aids which assist him in defining his requirements either 
in statement or graphics form. He is reminded, for ex- 
ample, if he states requirements that are inconsistent, 
incomplete, or redundant. This is especially important 
because it is at this time that the user is not always sure 
of what it is he wants to have his system accomplish and 
AXES assists him in understanding his own require- 
ments, The developer can use the same mechanisms to 
try to understand the user’s requirements. AXES, which 
is itself based on the HOS theory, provides the user the 
means to define systems based on the HOS theory. It is 
this one fact that makes AXES defined systems unique. 

Three basic types of mechanisms are used to define 
systems: data types, functions, and structures. One can 
define systems with primitive mechanisms and one can 
define systems with more abstract mechanisms. All ab 
stract mechanisms are ultimately defined in terms of 
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the primitive mechanisms. A major emphasis of AXES 
is that it is a language for defining mechanisms for de- 
fining systems. Although the mechanisms adher to 
AXES semantics, the syntax is up to the user. A set of 
AXES mechanisms forms an AXES library. Use of com- 
mon mechanisms is obtained by either common use of 
the same mechanisms or by various derivations from 
existing mechanisms. Derived mechanisms, in turn, are 
added to the library for common and standardized use. 

There is a hierarchical breakdown of use of mecha- 
nisms in the AXES library. That is, any system can be 
defined in terms of the primitives (Fig. 8). There is also 
a set of abstract mechanisms, defined in terms of the 
primitives, that are universal in nature in that any sys- 
tem definition process can be accelerated by the use of 
these more abstract mechanisms. There are families of 
systems which share in common a particular set of even 
more abstract mechanisms than the universal ones. In 
fact, the very fact that a set of systems share a set of 
mechanisms, in common, that another set does not 
share, in common, is one way of distinguishing these 
two sets of systems. This process determines which sys- 
tems fall into distinct families of systems or a distinct 
family or a distinct system. As we define a wide variety 
of diverse system types with AXES we continue to learn 
more about “natural” functional divisions in regard to 
hierarchical families of systems. 

Although AXES is a language, AXES is unlike soft- 
ware specification languages. In fact AXES can be used 
for specifying systems other than software, such as 
hardware and people systems. Interactive AXES pro- 
vides decision support mechanisms. If a user, for ex- 
ample, has a syntax or a language that is ambiguous, 
AXES interactively works with the user in order to make 
it unambiguous [39]. Thus, it is possible for a user to 
use his own syntax or existing front-end syntax oriented 
techniques for user friendly reasons. In doing so, what- 
ever means of communication is employed, the resul- 
tant definitions in terms of that communication vehicle 
will have the same rigor as AXES. In addition, defini- 
tions in terms of more than one kind of communication 
vehicle can be integrated as if they were part of the 
same system. With this capability, AXES provides a 
means for diverse users and for users and developers to 
speak the “same” language. 

AXES specifications can also be transformed to other 
representations by translation of a proper subset of its 
properties. Automated means can provide projections of 
an AXES specification in terms of data flow diagrams, 
priority diagrams, structured design diagrams [40,41], 
syntax oriented techniques, and other representations 
such as Higher Order Languages, or machine 
languages. 

Although AXES is a language, it is not a program- 

ming language. Not only is AXES a nonprocedural lan- 
guage, but a set of AXES statements allows for many 
options of implementation both in nonsoftware environ- 
ments or at the programming stage of development in 
software environments. That is, from one definition in 
AXES a system could either reside in, e.g., a distributed 
or a sequential environment or it could reside in, e.g., 
an ADA or FORTRAN environment or it could reside di- 
rectly on various computer architecture environments. 
It is thus an implementation independent language. 

Analyzer: Analyze the Requirements 

Once the requirements have been defined with the AXES 
component, the Analyzer component of USE.IT ana- 
lyzes the AXES defined requirements [ 1,42,43]. Once 

the Analyzer (with interaction from the user if the 
Analyzer finds a problem) has completed its job, the 
requirements are consistent and logically complete. The 
Analyzer insures logical completeness by detecting 
missing functions or missing data and by guaranteeing 
that the hierarchical definition stops at primitive oper- 
ations on algebraically defined data types, insures con- 
sistency by enforcing correct interfaces and correct 
data flow (thus data and timing conflicts are resolved), 
and integrates system modules by checking across in- 
dependently developed modules and checking defini- 
tions of “library” modules. 

RAT: “Program” the Requirements 

The next step is performed by the Resource Allocation 
Tool (RAT) [ 1,441. Here, a given analyzed AXES speci- 
fication is itself treated as data and transformed to an- 
other representation. Different representations gener- 
ated in this manner are referred to as layers of 
implementation. 

Although the RAT produces code automatically, the 
RAT is not just a code generator. The RAT is an auto- 
matic programmer. That is, the RAT reads in unambig- 
uous requirements from any problem domain, received 
from the Analyzer, and produces source code from 
those requirements. The code produced by the RAT 

could be an HOL source code, machine language code 
or, for that matter, commands to a robot. Boehm [45] 
referred to Automatic Programming as 

The ultimate in program generation capability, in which 
a user begins to specify his derived information process- 
ing activity to an automatic programming system, which 
then asks him questions to resolve ambiguities, clarify re- 
lationships and converge on a particular program speci- 
fication. The system then automatically generates a pro- 
gram that implements the specification. 
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He then goes on to say that “ . . . automatic pro- 
gramming systems are still somewhat beyond the cur- 
rent frontier of the state-of-the-art.” But the reason 
that USE.IT is able to automatically program is be- 
cause the Analyzer ensures that the RAT receives un- 
ambiguous requirements. 

The RAT also provides the end-user with the capa- 
bility to reconfigure to any language or machine envi- 
ronment desired, whenever desired, without modifying 
the requirements definition. Since the Analyzer has 
guaranteed that the requirements used by the RAT are 
consistent, the automatic programs produced by the 
RAT are also consistent. Not only are the initial require- 
ments defined by the user guaranteed to be interface 
error free after the “programming” phase of develop 
ment, they are also guaranteed to be the same ones the 
user defined. 

The RAT generates simulations from control maps in- 
volving unimplemented primitive operations, generates 
efficient implementations from control maps involving 
implemented primitives, provides an advanced capabil- 
ity for implementing basic primitives in an HOL (e.g., 
FORTRAN) that far exceeds the capability of that HOL 
by itself, and permits inclusion of existing HOL pack- 
ages into the user library as external operations. 
Whereas in a historical mode1 the programmer goes 
through a design and code phase manually, in the func- 
tional mode1 the developer designs by choosing which 
RAT he wants. The RAT then performs his coding 
automatically. 

The Same set of requirements that has been “ratted” 
to one environment (e.g., FORTRAN) can be ratted to an- 
other environment (e.g., ADA). This means, for exam- 
ple, that developers who are anxious to start to use the 
ADA DOD standard language but who do not have the 
compiler and other support tools yet available can de- 
fine their requirements in AXES and rat them to FOR- 
TRAN or to some other HOL environment until ADA is 
available. They can then simply rat them to ADA when 
ADA is ready. It also means that developed systems are 
never obsolete just because there is a new language or 
a new computer system introduced within an 
organization. 

HOM: Execute the Program 

If “ratting” produces HOL code, compilation, of 
course, is necessary before execution. If machine code 
were “ratted,” this would not be a necessary step. 

The final step in the USEIT software development 
process is the execution step itself where a Higher 
Order Machine, the HOM, is the particular machine 
configuration that executes the “ratted” requirements. 

Documentation with USEAT 

USE.IT is self documenting in that the AXES front end 
produces a documented hierarchy of the requirements 
for the user. The analyzer produces documented error 
messages if there are errors, and documents the fact 
that there are no errors, if there are no errors. The BAT 
will produce documented code if asked to do so. Addi- 
tionally, a plotter, which is one of the USEIT support 
tools, will produce documented plotted output of the 
system requirements if requested to do so. 

Management with USEAT 

Management properties are inherent within USE.IT. 
That is, in a historical model management is something 
to be contended with, additionally or after the fact; 
management in the functional mode1 is part of the 
model, itself. Each function is a manager, both in the 
target system development and in the target system. 
Each integration of functions, itself a function, is a 
higher level manager than the functions it integrates. 
The more abstract a definition becomes, the less there 
is for human management to perform with respect to 
that system [ 301. 

Some management issues, in the use of USE.IT, still 
remain to be resolved by individual project managers. 
In our own experiences, we find ourselves resolving is- 
sues such as: 

What happens if a user(s) submits the same mechanism 
(semantically) more than once in different syntacti- 
cal forms? 

What happens if the same name is given to two differ- 
ent mechanisms? 

When should more abstract mechanisms be constructed 
for common use when combinations of mechanisms 
are used or could be used quite frequently? 

Should users be forbidden to use combinations of more 
primitive mechanisms when more abstract mecha- 
nisms exist? 

Should seemingly arbitrary rules exist such as limita- 
tions of length in English descriptions? 

Which parts of the syntax should always be standard- 
ized? That is, if one person turns in graphics and an- 
other English, should both be accepted, neither, or 
should each person be asked to submit all known 
syntax forms for each mechanism? 

If a better syntactical form is realized, should all exist- 
ing mechanisms be updated to report the change? 

What aspects of mechanism building should be frozen 
for a given project development? 

Which mechanisms or aspects of mechanisms should be 
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coordinated with other management in the project 
before they become part of the ongoing language of 
that project? 

What are the various categories and dimensions of cat- 
egories that should or could exist in the library? 
Should they, for example, be categorized by project, 
basic types of mechanisms (e.g., data types), layer of 
deveIopment (e.g., requirement layer vs code layer), 
type of mechanism with various syntaxes, or by hi- 
erarchical breakdown of use (by application 
family)? 

Each issue, however, and its resolution is far more 
understandable in terms of a functional model than it 
is in terms of a historical model. And, there are simpler 
and fewer issues to resolve. 

The AXES Library: A Functional Language And A Set 
Of management Standards 

With the functional model, any set of mechanisms and 
any set of syntax can be selected or defined provided 
that it is acceptable to the particular environment 
where that syntax is to be used. Just as freedom is with 
respect to any other phenomenon, however, freedom in 
this case, as well, is something to be respected. That is, 
if there is freedom with respect to the particular mech- 
anisms chosen, or in the use of syntax for those mech- 
anisms, that freedom should be capitalized on but not 
misused. The responsibility of such a process, should 
this freedom be exercised, should be one of project 
management. 

Whatever the case, the very choice of each mecha- 
nism and the syntax that goes with it determine not 
only the language that is to be used on the project for 
defining the requirements, but, it also determines, to a 
large extent, the way that the people who are involved 
on the project relate to each other and how they think, 
individually or collectively. That is, as new mechanisms 
and syntaxes are added or deleted, the language used 
for both the system being developed and by the people 
working on it, evolves as well. In such a way the so- 
phistication of both the methods used on the project and 
the people on the project evolves together. There is, 
therefore, no need to live with an obsolete method of 
communicating, since the new means have been defined 
in terms of existing ones; yet the previous work does not 
have to be thrown out. We thus have a language where 
the language is what it is, since by doing it becomes. In 
essence, then, the state of the library is the state of the 
language; the state of the language is the state of the 
management standards; the library is the language; the 
language is the set of management standards. 

The Integration of USEAT 

In its final and integrated form, USEIT provides for 
an automated life cycle process which eliminates the 
need for manual intervention. It not only provides a 
strict separation of the specification of a system from 
its implementation, but it permits a totally automated 
implementation of a system from a completely ma- 
chine-independent speci~cation. A friendly interface 
with automated decision support is provided by the user 
friendly package, the system is specified with AXES, the 
definition produced is checked for consistency by the 
analyzer, the verified definition is resource allocated by 
the RAT, and the verified, resource allocated system def- 
inition is executed on the HOM. USE.IT is not re- 
stricted to a particular language or machine environ- 
ment or to the type of user friendliness desired at the 
front end of a development process. The use of USE.IT 
is not restricted to any application area. The USE.IT 
~om~nents, themselves, are defined in terms of AXES. 
And, all configurations of USE.IT have the same basic 
core and standardized units (Fig. 9). Once a set of re- 
quirements is defined, USE.IT is able to completely 
“develop” a system. 

The functional life cycle model, upon which USE.IT 
is based, is a departure from the historical life cycle 
model. We summarize here differences between the 
functional model and our own experience on APOLLO 
[ 11. Whereas in a traditional model, the majority of er- 
rors found are interface errors, in a functional model 
there are no interface errors. In a traditiona model, 
these errors are either found manually or by dynamic 
runs (usually after implementation); in a functional 
model these errors are found by automatic and static 
analysis (before implementation). In a traditional 
model requirements are known for being inconsistent; 
in a functional model they are guaranteed to be consis- 
tent. In a traditional model, programming is manual; in 
a functional model the programming is automatic. In a 
traditional model there is no guarantee of maintaining 
the function integrity of the requirements after imple- 
mentation; in a functional model there is a guarantee 
of maintaining function integrity of the requirements 
after implementation. In a traditional model require- 
ments from different types of users are defined with dif- 
ferent types of requirements definition techniques and 
cannot be integrated; in a functional model, require- 
ments definitions (and thus their implemen~tions) can 
be integrated. The traditional model is known not to be 
cost effective. Conservative estimates are that the func- 
tional model with USE.IT could cut costs by at least 
75% when compared to the traditional model (see sec- 
tion on productivity below). 
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The Development of USEAT 

USEIT was defined with AXES. It was first imple- 
mented in PASCAL and FORTRAN by conventional 
means. Now that this internal bootstraping process has 
taken place, we are now in the process of redeveloping 
USE.IT in terms of itself. 

Figure 10 summarizes the HOS life cycle evolve- 
ment. Figure IO(a) summarizes the evolvement of the 
AXES user friendly package for defining a system. Here, 
empirical data from experiences of developing large 
systems, existing technologies, theoretical studies, etc., 
As, was used to derive axioms and objects for defining 
systems A.+ [I]. Primitive mechanisms, in turn, for de- 
fining data types, functions, and structures were derived 
from A, and A, [ 21. Again, based on A,-A,, the AXES 
technique A, itself was derived [33]. Similarly, AXES 

mechanisms were created based upon A,-A, and user 
friendly operations (UFO) were created based upon 
A,-A, [2]. The user need only interact with A, since 
the other functions that & is derived from are already 
an integral part of the automated life cycle process. 
And as time goes on, the interaction with the AXES 
UFO will be minimized even further. 

Figure 10(b) illustrates the evolvement of the Ana- 
lyzer user friendly package for analyzing a system def- 
inition. Here Bz is shown to be derived from A,,-AS, al- 
though A, itself, must go through B as a next step. 

Figure 10. HOS life cycle evolvement. (a) The HOS life 
cycle definition language: AXES. (b) The HOS life cycle ana- 
lyzer function: Analyze. 

Likewise, the analyzer, itself, is a system which must 
go through the whole development process on a target 
system just like its target system. Likewise, it is a subset 
of the AXES mechanisms, but it needed information of 
A,-A, to help determine which of those mechanisms 
were to be related or, in fact, identified. But the AXES 
mechanisms have to be analyzed. Thus the Analyzer is 
capable of analyzing itself. (Of course, initially there is 
a bootstrap process.) 

Figure 10(c) illustrates the evolvement of the RAT 
user friendly package for resource allocating a system 
definition to a particular machine architecture or set of 
resources. Here C, is shown to be derived from C, and 
C,. The RAT process, itself, is a system and therefore 
must go through the process of development just like 
the target system. That is, the RAT is derived from B 
which is derived from Ao-A,, since it is defined using 
AXES, analyzed using the analyzer, and finally itself 
“ratted” in order to “rat” other systems. Figure IO(d) 
illustrates the evolvement of the higher-order machine 
for execution of a target system (461. Here, it is shown 
that the machine itself is both based on and defined, 
analyzed, and resource allocated with the HOS life 
cycle model. 

Here, then, is a life cycle process, itself a system de- 
veloped with its own model, where the functions and 
their relationships are well understood. It is recursive in 
nature from several viewpoints, where the target system 
and the machine itself will eventually be developed, de- 
rived from and using the same principles (Fig. 11). We 
can take advantage of this fact in many ways. In the 
resource allocation process, for example, systems are 
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related which have the same generic properties. Thus a 
complete system and its environment are able to capi- 
talize on the benefits one gains from a functional life 
cycle model. As another example, evolving machine in- 
dependent definitions can be useful. One use is operat- 
ing systems which can be viewed as layers of interme- 
diate machine architectures. Such layers come in handy 
as “break off’ points for machine transferability re- 
quirements or constraints [30]. Figure 12 illustrates 
these concepts within the life cycle model. Here, we 
show an operating system as an intermediate machine 
concept where a target system is an instantiation of 
something to be run by that machine. Similar break- 
downs can be defined with algorithms, in general. 

THE DEVELOPMENT OF THE LIFE CYCLE MODEL 

The life cycle model is a complex real-time large-scale 
system just like a radar system or a missile system. 
USE.IT, for example, is one part of the life cycle. So- 
phisticated concepts, therefore, such as communicating 
asynchronous and concurrent processes, synchroniza- 
tion, and reconfiguration must be contended with in de- 
fining and developing such a system. Examples of struc- 
tures that are used for these types of phenomenon can 
be found in [47]. Figure 13 illustrates the use of HOS 
for defining a small part of a life cycle model. Such a 
part could exist in, for example, the definition process 
of the life cycle model. Here we show the definition of 
a communicating, asynchronous, concurrent structure, 

(d) 

Figure 10. (continued) (c) The HOS life cycle resource al- 
location function: RAT. (d) The HOS life cycle execution 
function: HOM. 

the EXCHANGE structure [47]. This structure can be 
used in any problem domain. We have taken the EX- 
CHANGE and annotated it with life cycle model terms 
for purposes of demonstration, only. 

In this particular illustration the structure is named 
“Xchevery” [Fig. 13(a)]. Here we have a user and a 
developer defining requirements. The user and the de- 
veloper each go through several iterations of the defi- 
nition process. Both are processing concurrently and 
asynchronously. Occasionally each is to update his own 
set of requirements with the other’s, but it is up to each 
individual process when this event takes place. This 
process continues until Preliminary Design Review 
(PDR) timing determines that it stop. We show here a 
“development” of this particular part of the life cycle 
model, as opposed to developing something with it. (We 
will show later, in this paper an example of a system 
developed with USE.IT.) 

Since the system Xchevery is specified in terms of 
AXES it is defined with structures, functions, and mem- 
bers of algebraically defined data types. Some of these 
units are primitive and others are defined in terms of 
primitives. For example, in Figure 13(a) the structures 
used are the primitive structure, JOIN, and the ab 
stract structures COOR and COINCLUDE [2]. The 
functions are on each node of the hierarchy. Here, for 
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X represents input to the target system 

A represents target system 
OS represents machine independent operating system 

MOS represents machine dependent operating system 
HOfi represents higher order machine for HOS 

NOTE 2: In addition to any target system, 
OS, MOS, HOfl, execute, analyze, 

RAT and AXES could as uetl be X 
or A (being or doing) depending 
on view point with respect to 

the development process. 

NOTE 3: 

example, Clone1 is a universal function in that it is ap- 
plicable to any data type [2]; Xchevery is a recursive 
function (see third level) in that it is invoked by a func- 
tion, Update, which is invoked by Xchevery on the top 
node. The data types in this system are Ordered Sets 
[2] and Naturals [33]. R, for example, is a member of 
Ordered Set and n is a member of Natural. Xchevery 
controls the functions immediately below it with a 
COOR structure, a structure for making a decision. 
That means that either Clone1 or Update will be per- 
formed. If Clone1 is performed, the most recent require- 
ments are frozen and the process of defining require- 
ments is complete. If Update is performed, then Update 
controls the functions immediately below it with a 
JOIN structure. The JOIN is used for communication 
of processes. Here, the output of Incorp is received by 
Xchevery as input for another recursive round of 
Xchevery. Incorp controls its lower level functions with 
a COINCLUDE structure, a structure used for parallel 
processing. Here, both Decision,@, and Decision,, 
are able to be processed concurrently. Each of these 
functions make use of the structure, Decision [Fig. 
13(b)]. Decision has one variable function F and an op- 
eration on Ordered Sets, Integrate, which creates one 

Each F is a manager 

Figure 12. A bidirectional functional look at the HOS life 
cycle. 

Ordered Set from two Ordered Sets as inputs. In using 
DECISION, Xchevery either “plugs” User into F or 
Developer. Note that although, for example, De- 
cision- has two inputs, its lower level function, De- 
veloper, when plugged into F in Decision can begin as 
soon as it receives its own input. Likewise this is true 
with Decision,,,. Note that a structure can be used, 
once defined, as a more abstract entity [Fig. 13(c)]. For 
more detailed discussion of how to interpret the mean- 
ing and use of many of the structured mechanisms used 
here see [ 21. 

An example of a USE.IT development session with 
these user requirements is shown in Figure 14. Here the 
updated requirements to Xchevery are Xchevery itself. 
To illustrate, further, the “generics” of systems, we 
have included (Fig. 15) excerpts of a USE.IT session of 
a system which uses the same Exchange structure as we 
used (i.e., Xchevery) for the life cycle model for asyn- 
chronous and concurrent communication between a 
pilot, operator, plan, radar, and missile. 
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Dm) 

Where U,, U,+l, Dm, 
Dm+l, R are 
Ordered Sets of AXES 
statements; 
Where n, m are Naturals; 

DecisionDe,eloper(un*Dm) 

STRUCTURE: R,+l - Decision(R",Cm) 

Ready to integrate (n) 

A 

Where R,,R,+l,C, are 
CDOR Ordered Sets of AXES (b) 

statements; 

R,+l = F(R,) R,+l = Integrate &R,,C,) 

fln*Dm) [c) 

R = Xcheveryuser,Developer(un,Dm) R =/User(Un,Dm) 
\ 

R = Developer(U,,Dm) 

Figure 13. An example of the use of HOS for defining a part 
of its own life cycle. (a) Structure for defining communicat- 
ing processes which are synchronous and concurrent. (b) 
Structure for deciding when to incorporate other require- 
ments into your own. (c) Two syntax options for use of struc- 
tural Xchevery. 

THE TRANSITION FROM THE HISTORICAL 
MODEL TO THE FUNCTIONAL MODEL 

The introduction of the functional life cycle model 
within an organization which is now using the historical 
model is not unlike the introduction of computers in the 
fifties when organizations were using mechanical cal- 
culators. The introduction of a functional model, in sys- 
tems already deployed or far down the line in the de- 
velopment process, is not an easy job. In some cases, in 
fact, it is almost impossible. There then becomes the 
unenviable choice of either fixing existing systems or re- 
doing them completely over again. Often, it is much 
more cost effective in the long run to start over, al- 
though such a fact is not obvious until it is too late in 
that much time and money is wasted in finding this out 
by attempting to fix a system first. This is often true 
when requirements for a particular system are in a state 

of flux. For those systems which have more or less sta- 
bilized, or for those systems which are near obsoles- 
cence, a complete redo may not be such a wise choice. 
But for those systems which are near the front end in 
their development or which are changing almost as 
often as to behave as a new system, there appears to be 
no reason why the use of newer techniques would not 
be a major consideration (see discussion of Table 10). 

With those systems where a decision has been made 
not to change over to new techniques there are still 
some benefits that can be obtained by using the new 
techniques as a support tool to existing techniques. An 
attempt can be made, for example, to take an ongoing 
specification to a parallel prototype one using the new 
techniques. Such an effort is very effective as a front- 
end verification and validation tool, since many errors 
can be uncovered in the translation process. Not only 
does this process find errors, but it finds errors without 
running the system dynamically and it finds them early. 
The new converted specification can also be used as a 
means of understanding the original specification if it is 
still considered desirable to keep it intact as the primary 
system. And, eventually if the primary system has had 
so many changes as to be unwieldy, there is always the 
back-up system to transfer over to should such a trans- 



Figure 14. Xchevery development session with USE.IT 
[49]. (a) The analyzed definition. (b) Excerpts of FORTRAN 
code (automatically produced by USEAT). (c) Some results 
of execution. 
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Figure 15 (c~~fj~~e~) (d) Some results of execution. 
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fer be considered necessary. We have found that such 
an exercise can be useful for verification and validation 
purposes even when a specification has been imple- 
mented within a particular machine environment. In 
this case, several errors can be detected that could be 
fixed both in the original specification and in its result- 
ing code. 

There are several “incremental” methods for start- 
ing over with USE.IT. These are applicable to situa- 
tions where system developers want to start a target 
system’s development from scratch but where there are 
reasons, political or otherwise, for holding on to an ex- 
isting tool, such as a language, to use with the func- 
tional model. In most cases the easiest and most cost 
effective method is to use the pure functional model 

without attempting to complicate it. To “start from 
scratch” means bringing in others to help develop the 
system or training existing developers. This initial in- 
vestment is minor within the overall context of devel- 
oping a system. A summary follows of the various al- 
ternatives, starting with the pure functional one (Fig. 
16). 

Functional method syntax and semantics ap- 
proach: [Fig. 16(a)] the most direct since it corre- 
sponds directly to the functional life cycle model. In this 
case the developers use both the syntax and semantic 
rules of the functional approach [ 371. 

Figure 16. Methods for starting over. 

r-1 t 1 I I I I l----l 

/ f?k'," 1 4 HOM / 1 AXES / ,j ANALYER } ,j RAT } 

1 I I I I I I 1 I 1 

A 8 C D E 

(a) FUNCTIONAL METHOD OF SYNTAX AND SEMANTICS 

(b) A FRONT-END TO THE FRONT-END 

(c) "X" SYNTAX FUNCTIONAL METHOD SEMANTICS 

(d) PROVIDE "X" SYNTAX WITH FUNCTIONAL SEMANTICS 

AXES 
MECHANISMS 
RESTRICTED 
TO "X" 
SYNTAX 

(e) PROVIDE "X" SYNTAX WITH FUNCTIONAL METHOD SYNTAX AND SEMANTICS 

AXES 
Xl,...X" 

(f) EVOLVING INTEGRATION OF SYNTACTICAL METHODS 
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A front-end to the front-end approach: [Fig. 16(b)] 
the target system is defined with the new syntax and 
semantics rules of the functional approach. The com- 
pleted definition is then translated to a definition, which 
still follows the functional rules, but it is described in 
terms of a more familiar syntax, so that the developers 
may still “talk” or “think” in the same “language,” 
syntactically [ 501. 

In this case there is the initial investment of building 
a translator, and it is necessary to have the definition 
(and changes to it) provided by those who are familiar 
with the syntax of the functional method. A potential 
shortcoming is that the actual physical process of defin- 
ing a system gives a familiarity not acquired by learn- 
ing one already provided. Thus the “developers” as op 
posed to the front-end “definers,” in this case, might 
start with an unnecessary hardship. This approach, 
however, could appear to the developers to have less of 
a transient then that initially provided by the “cold tur- 
key” approach. 

“x” syntax, funct~o~l rnet~~ semantics up 
preach: [Fig. 16(c)] the developer is still able to use 
the syntax he is most familiar with, but he must follow 
the rules with the use of this “x” syntax. There is more 
than one way of accomplishing this [39]. With the Di- 
rect Method, the developer learns the rules and is 
taught to write system definitions using similar syntax; 
but he must follow the rules provided to him for use 
with that syntax. With the Indirect Method, the devel- 
oper uses the same syntax and he does not necessarily 
follow the functional semantic rules (just like he always 
has before), Once the definition has been ~mpleted or 
while he is in the process of defining the system, a user 
friendly module assists him by asking him enough ques- 
tions for him to provide answers, thus forcing the defi- 
nition to follow the same rules as those followed in the 
direct method. Once the definition is determined to be 
a good one by the decision support system, the defini- 
tion is converted to the syntax of the functional method. 

Provide “x” syntax with functional semantics ap- 
proach: [Fig. 16(d)] defines a compiler for the “X” 
syntax defined with the functional method and replaces 
the old compiler [5 11. There is training here in that the 
functional compiler will provide a new set of meanings 
to the “X language”. 

Provide “X” syntax with functional method syntax 
and semantics approach: [Fig. 16(e)] the “x” syntax 
is maintained by forcing the “new” mechanisms defined 
with the functional method syntax and semantics to be 

as familiar as possible by corresponding them to the 
“x” language. This method, however, is being short 
changed, if newer, more abstract mechanisms are not 
also constructed. These new mechanisms add new syn- 
tax to the “language”. 

Evolving integration of syntactical rnet~~s ap- 
proach: [Fig. 16(f)] the developers could choose to 
speak in the language desired (i.e., the old or the new). 
An algorithm would then be constructed to combine the 
functional syntax with the “x” syntax(es). 

RESULTS 

It is no coincidence that the HOS life cycle model is a 
functional one. The process of determining properties 
necessary for a functional model has been an interactive 
one with that of defining the HOS model. This process 
has not taken place overnight. It began when we were 
involved in all aspects of development of a very complex 
and large-scale real-time avionics system. At the time 
we were only interested in which things we should do 
differently for the next applications or in which things 
we should keep on doing since we could not find any 
reason to want to change them. The first analysis led to 
a beginning towards understanding generic properties 
of a system [l] and later towards understanding the ge- 
neric properties of a system for the development of a 
system [ 271. 

We began by attempting to unde~tand the proper- 
ties of our own software system and its development. 
We extended this analysis to one of understanding a 
larger system within which the software resided. The 
result was a theory for defining systems. At this time 
we had only a set of definitions and axioms with which 
to define systems. A definitional process was time con- 
suming since each definitional step required theorem 
proving exercises. Although we were successful in the 
application of the theory, in that it worked in providing 
unambiguous definitions, we found that using these for- 
mal methods, directly, to define each level of a hierar- 
chical definition was a very user unfriendly approach to 
take-in fact, so unfriendly that we were the only ones 
to use the theory for some time.To remedy this situa- 
tion, we attempted to ~mmunicate, more effectively, 
the procedures that we went through to others. To do 
so required a next step of analysis. It did not take long 
to realize that as we defined systems, certain common 
patterns would occur over and over again. Each of these 
patterns, a proof in itself, was then adopted for future 
systems as a standard for definition. The first mecha- 
nisms to evolve were the primitive mechanisms (primi- 
tive structures, functions, and data types) for defining 
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a system [ 1,2]. Another result was the demonstrated 
ability to integrate these mechanisms which consisted 
of both generation and behavior types of definitions 
(i.e., structures and functions with data types). We then 
proceeded to build more abstract mechanisms in terms 
of the primitive ones. With these mechanisms we had a 
more effective means of conveying to others how one 
goes about defining an HOS-based system [ 11. We 
found, however, that our procedures were still not user 
friendly enough for most system designers and that 
there was only a handful of us who proceeded to use 
our theory in its early stages. We discovered, however, 
at this early time that the properties of these systems 
were very different than those of conventionally defined 
systems. In particular they served as a unique vehicle 
for automation. We also knew that few would benefit 
from them if we could not convey these properties even 
more effectively to others. It was at this time that we 
decided to accelerate the automation of the methodol- 
ogy, both as an end in itself, and as a means of convey- 
ing to others what was possible with the theory. First 
we defined a conceptual life cycle model for the Army 
[29] and a requirements definition language for the 
Navy [33]. For the Army we defined the practical as- 
pects of our theory for a new life cycle approach. For 
the Navy we attempted to make possible the use of that 
approach for a large class of users by developing the 
language AXES. 

Aside from a stepup in user friendliness, the key con- 
siderations which were introduced at the time we de- 
fined AXES were those of variable syntax, extensibility 
for all types of mechanisms, abstraction, ability to in- 
tegrate data types, structures and functions at any level 
of abstraction, and the ability to define all mechanisms 
in terms of the HOS primitives. 

Once the AXES component was developed, there were 
numerous experiences in applying the HOS theory as a 
definitional method. Earlier efforts were without auto- 
mated aids (see discussion of some of these efforts in 
[2,27]). Some of these experiences were with software, 
only, systems, some were systems of which software was 
a part, and some were systems without software. Others 
were systems for developing systems. In these earlier 
efforts HOS was used only as a means to define systems 
in such a way as to be free of ambiguities. Not only did 
this provide a way of helping one user to convey the 
meaning of his part of a system to another user, but it 
also helped a user understand the meaning of his own 
part of the system, especially in terms of the larger part 
within which it resided. 

We suspected that unambiguous requirements 
would make the developer’s life a lot easier; this in turn 
would make the user’s life a lot easier. Our suspicions 

proved out when our staff defined a radar system in 
AXES and turned it over to a different organization to 
develop the system [35]. On this project, we demon- 
strated, and verified more completely than before, that 
programming, indeed, could be almost a one-for-one 
process from requirements if requirements were defined 
in an unambiguous state. 

The first tool to be automated was the Analyzer. The 
second tool to be automated was the RAT. The advent 
of its automation completed the automation of the life 
cycle model, USE.IT, for its first complete configura- 
tion. The RAT (together with AXES and the Analyzer) 
has now been demonstrated within large system 
applications. 

Our first application demonstration of a complete 
USEIT configuration, in its prototype state, and out- 
side our own organization, was in the manufacturing 
environment. Here we demonstrated the feasibility of 
an automated life cycle concept to a system which con- 
sisted of an interactive human operator within a deci- 
sion support environment of hardware and software 
subsystems [ 381. 

Another application, the ASAS system, consisted of 
a demonstration of a module which was a part of a bat- 
tlefield intelligence system environment [ 371. Our staff 
defined a set of requirements taken from existing doc- 
umentation. This documentation consisted of a mixture 
of English, equations, and SREM. The requirements 
defined a module which would result in approximately 
10,000 lines of code if they were resource allocated to 
all software. A major part of this module was defined 
with AXES and analyzed with the Analyzer, removing 
all inconsistencies in this part of the requirements. For 
demonstration purposes, several hundred lines of FOR- 
TRAN code were produced automatically, and executed 
from software portions of the system requirements. 

Several organizations, other than our own cus- 
tomers, for whom we performed experiments or devel- 
oped prototypes have had some experience with the 
AXES and the Analyzer components. We are at this time 
actively in the process of installing complete configu- 
rations of USEIT, which have in addition, the RAT, in 
the government, university, and commercial environ- 
ments. Although at this early date we can not report 
any extensive statistics in the use of USE.IT by anyone 
other than ourselves, we have had some preliminary ex- 
periences with customers, to date, which we believe 
would be of interest in that they do, we believe, give a 
hint as to the ramifications of the use of an automated 
functional life cycle model for future applications, par- 
ticularly the large and complex ones. 

One commercial organization, for example, in the 
communications environment gave us user’s require- 
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ments for what we will call a real-time CLOCK prob 
lem. Our staff defined the user’s requirements in AXES 

and developed it with USE.IT as the user observed the 
process. The results of this problem are documented in 

1521. 
A member of another organization decided to take 

this same problem and write the program for it in order 
that he could compare USE.IT’s productivity to his 
own. The resources used by our staff were 4 man hours 
to define the problem. USE.IT was used to “develop” 
it. The resources used by the manual method to develop 
it were 3 man days where the programmer claims to be 
a 5000-lines-a-month programmer. 

A third organization gave our staff a nontrivial real- 
time asynchronous communicating concurrent process- 
ing radar system problem. The results of this problem 
are documented in [49]. Some of the results of the life 
cycle process of this problem are illustrated in Figure 
15. Our staff spent a total of 24 man-hours to define the 
problem. USE.IT was used to “develop” it, resulting in 
800-1000 lines of FORTRAN code, varying with changes 
as requested by the user. If we compare the time with 
USE.IT to an average programmer’s time (by DOD 

standards) such a programmer would have spent 80 
man-days for just the implementation part of this 
example. 

Still another organization gave us a problem related 
to manufacturing of buildings. Our staff defined and 
developed this application in 11 man days. It resulted 
in approximately 10,000 lines of FORTRAN code [53]. 
Our customer estimated that by conventional standards 
it would have taken them approximately two years to 
do the same job. Other more recent experiences have 
been documented such as [54,55]. 

It became apparent that some organizations and ap- 
plications would not be able to take advantage of 
USE.IT unless there was an effective means to hook up 
the front end of their environments to the front end of 
USE.IT and the back end of their environments to the 
back end of USE.IT. Our initial attempts with the front 
end were with PSLIPSA, SREM, and IDEF. Here we were 
able to show that users could “speak their own lan- 
guage”, but yet gain the rigor that is required for un- 
ambiguous communication and thus the automatic pro- 
gramming of USE.IT. Our initial attempts with the 
back end involved a research version of the RAT which 
automatically programs in APL, PASCAL, and LISP. They 
were followed by the production version of the RAT 

which now automatically programs in FORTRAN and 
PASCAL. Other more commercially oriented organiza- 
tions who are involved with very large data bases are 
often dependent upon existing data bases as well as 
with data base handling mechanisms. We are now in 
the process of working with these types of organizations 

by helping them to “plug in” to USE.IT. This involves 
the interfacing of USE.IT defined systems with data 
base management systems as external operations in the 
USE.IT system. Methods for defining a data base with 
USE.IT are discussed in [ 561. 

We have also worked with intermediate stages of de- 
velopment by attempting to put the rigor of AXES into 
higher order languages. For, example partial semantics 
of ADA was defined in terms of AXES [ 561. This sets the 
stage for an ADA RAT as well. 

The HOS model has been applied to several different 
types of systems at various levels of its own life cycle 
model development. Not only did these experiences 
help us to understand properties of systems, including 
systems of developing systems, users who develop sys- 
tems, and tools for developing systems, they also helped 
us to enhance the methods that were being used to un- 
derstand these properties. 

The next step is to apply USE.IT to a system which 
is comparable in magnitude and complexity to the ones 
from which it was “derived” [ 11. For it is here that we 
believe its true virtues will be made known. 

PRODUCTIVITY AND USE.IT 

It is now not unusual in today’s computerized society to 
spend millions of dollars for a single software project. 
One recent interview with a relatively small insurance 
company has indicated present expenditures of 40 mil- 
lion dollars per year on software development. Further, 
this company is discovering that the projected number 
of software programmers required to fulfill their needs 
in the near future is just not available. 

Initial cost savings with USE.IT can be attributed to 
automatic detection of a large class of errors, to auto 
matic programming and to a design technique that ac- 
celerates the design process. 

Table 8, a typical breakdown of classical life cycle 

Table 8. Classical Life Cycle Costs (derived from [57]) 

Phase Activity 

Design Analysis Total 

Initial Development 10 15 25% 
Requirements & Design (R + D) 5 5 10 
Programming (P) _ 5 a 5 
Verification + Validation 0’ + V) ’ 10 10 

Maintenance 21 48 75% 
Residual errors 1.5 7.5 
R+D 13.5 13.5 27 
P 13.5 0 13.5 
v+v U 27 27 

Total develooment 37 63 100 

‘Analysis cost data for programming phase and design cost data for V + V 

phase included in analysis cost data for V + V phase (assumption based on 

available data). 
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costs for a large software project, was derived data from 

[571. 
This particular set of classical statistics [57] sepa- 

rates the software life cycle into four phases where the 
requirements and design, programming, and verifica- 
tion and validation phases are associated with initial de- 
velopment and maintenance begins when the system is 
“operational”. Each phase has associated with it two 
activities: design and analysis. Costs are associated with 
each of these two activities for each phase. (Note that 
activities within a phase and the phases themselves 
sometimes overlap, a problem often encountered in 
classical life cycle models.) With respect to mainte- 
nance costs, we make the assumption here that main- 
tenance is a reiteration of the initial development pro- 
cess in addition to fixing residual errors. 

Consider, now, the impact of USE.IT with respect 
to Table 8 (like life cycle costs). 

With the USE.IT tool, the design activity of the pro- 
gramming phase, which accounts for 18.5% of software 
costs, would be done automatically. In addition, where 
the analysis activity of all phases of present software 
projects accounts for approximately 63% of software 
costs, the USEIT tool would automatically perform 
75% of that function. Finally, we must not overlook that 
most of the time the user, or customer, of software 
products does not get what is really needed, because 
with traditional methods there is no way to communi- 
cate those needs adequately between the user and de- 
veloper. This part of the development process, referred 
to as the design activity during the Requirements and 
Design phase, accounts for another 18.5% of software 
expenditures. With USEIT, unambiguous definition 
and rapid prototyping are part of the process, resulting 
in an estimated minimum savings of 50%, while ensur- 
ing the customer gets what is wanted. 

One isolated example, with an insurance company, 
of USE.IT cost savings estimates is presented as a sim- 
plified summary in Table 9. Assuming these estimates, 
should the insurance company change over to func- 

Table 9. Estimated Life Cycle Cost Savings With 
USE.IT 

R + D design @ 
18.5% 

Programming Design 
@ 18.5% 

Analysis (all phases) 
@ 63% 

Total costs 

Historical costs 

$ 7,400,000 

7,400,000 

25,200,000 

$40,000,000 

Costs with USE.IT 

s 3,700,000 

0 

6,300,OOO 

$10,000,000 

Ykse example of annual savings to a small insurance company with present 
annual software development costs of 40 million dollars. 

tional techniques? According to Table 10, the most dif- 
ficult decision point would occur when the insurance 
company has just reached the 30 million dollars expen- 
diture point. 

Last, but not least, USE.IT provides a means to 
achieve “reuseable” software. New software projects 
today have no means to use parts of old systems to build 
new ones because the old parts are embedded in the old 
system so as to depend on other parts. Because cost im- 
plications of “reuseable” software to the development 
of new systems has not been exploited to date, a mini- 
mum cost savings of 75% can be projected over a pro- 
ject life cycle. Recent small samplings of actual 
USE.IT applications (see Results) have shown greater 
productivity then estimated above (Table 11). 

SUMMARY 

The theory exists. The technique for using it exists. Its 
automation exists. The AXES library will continue to 
evolve. We are currently concentrating on providing ed- 
ucation for developers and future developers which fo 
cuses on a different way of thinking about systems. A 
major step in this direction has also been taken by Mar- 
tin in his forthcoming book [58]. 

A most influential rationale to use the functional life 
cycle model, to organizations, is that which has to do 
with cost savings. Careful analysis should be performed 
in the area of cost savings in order to fully realize its 
impact. There are a lot of claims being bandied about 
in the area of productivity today, especially since pro- 
ductivity is such a popular subject. It is important to 
make sure that statistics are being used as they should 
be-with care. If for example, a development of a sys- 
tem can be accomplishedwith a new method in iti of the 
time it would have been developed with an older 
method, one gains by being able to accomplish the job 
with 90% savings. This, however, is an increase in pro- 
ductivity in 1000%. If, however, one takes a slice of the 
development process and compares the time of an au- 
tomated tool which takes, say, 1 minute to produce 
source code to 1 year of a programmer’s time, the in- 
crease in productivity could be viewed as 525,600%! 

With the historical life cycle model, there is both ob- 
solescence in the tools and techniques that are being 
used to develop systems and in the algorithms that are 
being developed with, or because of, these tools and 
techniques. How many times have design techniques 
been used in particular applications only because one 
was forced into them before and they are now ingrained 
habits? Is it really necessary, for example, in the soft- 
ware engineering field to design data base management 
systems, operating systems, or avionics systems as they 
are designed today? Many areas of research or follow- 
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Table 11. Actual Life Cycle Cost Savings with USE.IT 

Life cycle manpower 

9. 

Example 1 Example 2 Example 3 Example 4 10. 

E. Yourdon and L. Constantine, Structured Design: 
Fundamentals of a Discipline of Computer Program and 
Systems Design, Yourdon Press, New York, 1978. 
R. A. Snowdon, An Experience-Based Assessment of 
Development Systems, in Software Development Tools 
(W. E. Riddle and R. E. Fairley, eds.), Springer, Hei- 
delberg, 1980, pp. 64-75. 
J. Martin, Application Development Without Program- 
mers, Prentice Hall, Englewood, NJ, 1982. 
FOCUS, Information Builders, Inc. 
Nomad, National CSS, Inc., Wilton, CT. 
Ramis II, Mathematics, Inc., Princeton Junction, NY. 
Application Development Facility, IBM, Armonk, NY 
J. E. Stay, Denotational Semantics: The Scott-Strachey 
Approach to Programming Language Theory, MIT 
Press, Cambridge, MA, 1977. 
J. de Bakker, Mathematical Theory of Program Cor- 
rectness, Prentice-Hall, Englewood Cliffs, NJ, 1980. 
W. E. Howden, DISSECT-A Symbolic Evaluation 
and Program Testing System, in Tutorial: Automated 
Tools for Software Engineering, IEEE Catalog Number 
EHO 150-3, Library of Congress Catalog Number 79- 
91320, IEEE Computer Society, NY, 1979, pp. 207- 
210. 

With USE.IT 
Without 

USE.IT 
Productivity 

increase 
Cost savings 

4 hr” 3 days” 2 days” 11 days” 

24 hr” 80 days’ 60 daysb 1,000 days” 

600% 2.700% 3.000% 9,091% 
83% 96% 96% 99% 

“AClUd. 

bEstimate using DOD standard of 10 lines of code produced by an average 

programmer per day. 

on to research relating to the historical model are pur- 
sued that may themselves not be necessary. Is extensive 
work in areas such as special techniques for each of the 
areas of concurrent processing, asynchronous process- 
ing, proof of correctness, or theorem proving necessary? 
Or should there be a different focus in each of these 
areas than there is today? We suspect that, given a 
clean slate as a basic foundation, that one of the first 
areas of research should be to find out where such ob 
solescence truly exists. Such obsolescence, however, 
cannot be found unless those who look for it know what 
they are looking for. 
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