
The Functional Life Cycle Model and Its Automation:
USEJT

M. Hamilton and S. Zeldin
Higher Order Software, Inc.

Recently there has been an accelerated awareness of the
urgent need for effective system development tools and
techniques. Towards this end attempts have been made
to develop standard languages for programming and stan-
dard techniques for the front end of the development pro-
cess. Further, there has even been talk of integrating the
various processes within a system life cycle. Our thesis,
here, is that although these are steps leading in the right
direction, they are simply not enough. What we suggest is
needed, rather, is a totally new life cycle model; it is
based on pure functional needs. This is in contrast to the
“event” driven model that has been forced into being
based on constraints which are often unnecessary,
wasteful, and error prone. The functional model, itself for-
mally defined, not only includes formal techniques for de-
fining the front end, but it also includes techniques which
integrate by means of formal methods and automation
that front end to the rest of the life cycle of a system. A
fun~ional life cycle model has been defined. USE.IT, an
implementation of this model, provides for an integrated
and automated development process of a system. We dis-
cuss, here, the HOS functional model, USE.IT, and the im-
plications of their use.

INTRODUCTION

Software is a set of logical statements which can be and
which is intended to be executed by a computer.’ Soft-
ware is used for many purposes. In fact, software is

‘The term software, here, is used in a conventional sense. There
are other kinds of sets of logical statements, however. Some of these
sets differ only in that they can but are not intended to be executed
by a computer. Suppose, however, for a given period of time that a
portion of “software” was never executed on a computer and a por-
tion of “non software” was. From a practical point of view, wherein
lies the difference? There are still other kinds of logical statements
that cannot be directly executed by a computer although there is the
possibility of simulating their behaviors with software. Generically

Address correspondence to M. Hamilton, President, Higher
Order Software, Inc.. 955 Massachusetts Avenue, Post Ogice Box
531, Cambridge, MA 02139.

used within a particular ~mputer environment to help
users of particular applications to prepare other soft-
ware. We call a system which has been developed in
terms of a computer(s) and its interrelated software
systems an embedded system. That part of an embed-
ded system which directly relates to the computer and
its own embedded software is traditionally thought of
as software.

Indeed, a major aspect of our existence is software,
since the success or failure of an embedded system is
only as good as its software. Software can make or
break an economy; it can make the difference between
a good relationship and a bad relationship; it can make
the difference between getting to a destination or not
getting to one; it can make or break companies, proj-
ects, or people; it can provide for smooth running bu-
reaucracies or it can make them totally inoperable to
the point of bringing eve~thing involved to a standstill;
it could prevent or start a world war. In a sense, there-
fore, it should not seem irresponsible to conclude that
software is an integral part of that system which inher-
ently controls society. But software depends on the cor-
nerstone upon which its development is based. That cor-
nerstone is the life cycle model.

The life cycle model is the system or the set of pro-
cedures, rules, tools, and techniques used to develop a
system. A system developed by a particular life cycle
model is one of its target systems. A successful life cy-
cle model for developing embedded systems is a suc-
cessful model for developing systems, in general; for
what we are really talking about is an effective way to

speaking, we use software to include the larger domain of a logical
system which is computable of which software in a conventional
sense is only a part. Our solutions for computable systems, however,
cross over into the domain of solutions for non-computable systems
as well. Thus, when we later discuss solutions for developing better
“software” they can as well be used for developing better logical
systems and vice versa.

The Journal of Systems and Software 3,25-62(1983)
@I Elsevier Science Publishing Co., Inc. 1983

25
0164-I212/83/01002~-38$3,00

26 M. Hamilton and S. Zeldin

think, to communicate our thoughts, and to practically
realize those thoughts. The life cycle model includes a
myriad of aspects that must first be understood and
then integrated (Fig. 1). It starts with the definition of
requirements for a particular set of users and ends with
the final maintenance of a system that is operable by
those users within their own environment.

The life cycle model of a system can make the dif-
ference between understanding a system and not un-
derstanding it. It can make the difference as to whether
it costs millions or billions of dollars to either develop it
or to operate it. It can make the difference between that
system working or not working. It is clear that a major
concerted effort should be taken by embedded system
developers to ensure that the life cycle model for devel-
oping systems is an effective one. For, if such an effort
is not made, the life cycle model will be controlling us,
by being out of control, and not us the life cycle model.

THE HISTORICAL LIFE CYCLE MODEL-A
PROTOTYPE

We view the conventional, or historical, model as a pro-
totype. That is, it is useful from a historical point of
view in that we can learn from it for developing the
model of the future; but it should be viewed simply as
that, and not as something to be taken seriously as the
model of the future.

The historical model established its basic structure
almost overnight, over 20 years ago, in order to answer
the needs of an extremely fast growing and accelerated
hardware technology and its eager users. Its history was

and has continued to be influenced not only by events
and the timing of events surrounding hardware devel-
opment but by the politics which surrounded it as well.
As a result, patches to development techniques were
added to patches of development techniques to adjust
to the fast changing environment of hardware and its
users. That is, there is a problem to be solved, solutions
or partial solutions are attempted on an ad hoc basis;
they are then incorporated and become firmly locked in
as part of the life cycle model. Often, attempts have
been made to force individuals to accommodate its in-
adequacies into general solutions. Many solutions un-
fortunately have often been implemention dependent in
that they are wrapped up with a particular environ-
ment’s peculiarities. And, of course, many of the solu-
tions are wrapped up with different diverse environ-
ments, making it difficult or impossible to integrate
them when it comes necessary to do so.

The historical model is a ready candidate on which
to perform a “fresh start.” In order to start over one
must remove any preconceived notions with respect to
how the existing life cycle model accomplishes its job.
He only cares about what it should accomplish. Such a
commonsense, or functional approach, is helpful in at-
tempting to understand any phenomenon. Here, useful
functions are selected, relationships between these
functions are determined (and resolved if they are in-
consistent), and redundant functions are eliminated
[11. Once this process has been performed it is easier to
get an idea of what functions are missing. Although one
could interpret such an approach as a relational one,
the relations between functions can ultimately be un-
derstood in terms of functions.

STANDARDS Figure 1. Life cycle model components.

Functional Life Cycle Automation: USE.IT

Some Shortfalls of the Historical Life Cycle Model

It is not an unknown fact that the historical life cycle
model has serious problems. Over the years, we have
collected a list of complaints resulting from experiences
of ourselves and others which illustrate this fact further
(Fig. 2). The same complaints exist today as they did
many years ago. But all is not lost. We have an oppor-
tunity to observe just about any type of failure (and to
be fair, some successes) imaginable with all of the col-
lective experiences behind us with the use of this pro-
totype model. In the process of doing so, it is helpful to
determine why certain procedures exist. This some-
times helps to justify, or at least give a warmer feeling
for, the elimination of procedures which functionally do
not make sense within the context of an overall system-
atic process. Do they exist because other procedures
which were not working made new and additional pro-
cedures necessary as a quick fix? Do they exist because
of a peculiar trait that a particular hardware architec-
ture had? Do they exist because of a peculiar trait that
a particular human being had? Do they exist because
someone many years ago solved a particular problem in
a certain way and so everyone else did it that way be-
cause that is the only way it had been done before? Do
they exist because too many people are already doing it
that way to make the investment to change? Do they
exist because that is the way people were trained to do
it? Do they exist because people are afraid of change?
Do they exist because . . .? The answer is “yes” in all
cases.

It was not until we defined a functional model that
we understood the problems of the historical model as
we do now. This is due to the fact that the functional
model explicitly pointed out problem areas which were
not obvious to us before. It also suggested solutions not
theretofore thought possible. In the historical model
(Fig. 3) there are manual processes during and between
all phases of development. Manual processes encourage
the introduction of new errors into a target system.
Many of the processes of the historical model are can-
didates for obsolescence. When manual processes are
automated, for example, those processes established to
support each of the manual processes can be elimi-
nated. Unnecessary algorithms for each target system
are developed and maintained, sometimes for years. A
proliferation of sophisticated tools has resulted in order
to either answer a particular machine environment’s
needs or to help manage the horrendous problems that
compound developers’ problems. These include such
tools as higher order languages, compilers, operating
systems, and verification aids. Operating systems, for
example, are often worrying about uncontrolled inter-

27

rupts, deadly embraces, etc. that they would not be con-
cerned with if the system, so defined, was defined cor-
rectly in the first place. Both compilers and operating
systems concern themselves with complex resource al-
location algorithms they should have no concern for;
again this would not need to be the case if the systems
they dealt with were defined differently. Verification
tools test over and over again during every system dy-
namic run for unnecessary errors. In fact, the very use
of a technique can eliminate the possibility of particular
kinds of errors from even happening [21. Again, many
costly tools have been developed and are now continu-
ously maintained and used, unnecessarily.

Usually a target system in the historical model is de-
scribed in a different language for each different phase
of its development. Why? Probably because as each
new phase throughout the evolution of the historical
model was thought to be necessary, those creating that
phase used or made up their own language. Not only is
it necessary to translate a target system from the lan-
guage of one phase to a language of another phase, but
once a given phase of a target system is defined, it must
be proven to correspond to a previous phase. This has
become an extremely difficult process. Why? Probably
because the target system in each of these phases is de-
fined in different languages!

The historical model is inefficient in its ordering of
processes. It, for example, leaves the majority of veri-
fication and validation until the end. As a result errors
live in the target system longer than necessary and
these errors encourage new errors. One reason for this
is that the “language” has not really been formal
enough until the last phase (i.e., coding in software) to
verify a system defined in terms of that language. Sur-
prises then occur at the very end of development when
it is often too late to do anything about them. Or, a
whole new development step, throughout all the phases,
must be taken to “fix” a problem, if it is found.

Since the historical model is not functionally under-
stood, those systems developed with it are not function-
ally understood as well. As a result, it is not known
when an object within a system can be a static entity or
a “constant” within a development process. When, for
example, is it no longer necessary to verify an object?
Again, everything must be treated as an unknown until
the end. Thus, dynamic verification must always be per-
formed at its maximum. And this is impossible in large
complex systems.

The languages in the historical life cycle model are
traditionally syntax-oriented (i.e., emphasis on how it is
being said, not on what is being said) and each lan-
guage has its own fixed syntax. The fact is, everytime a
new syntax arrived, a new semantics method would ar-

C
O

M
PL

EX

SY
ST

EM
S

R
EQ

U
IR

EM
EN

TS

AL
W

AY
S

C
H

AN
G

IN
G

:
N

EW

ID
EA

S

O
R

ER

R
O

R
S

U
N

R
EA

LI
ST

IC

ES
TI

M
AT

ES

O
F

C
O

M
PU

TE
R

TI

M
E,

N

AN
PO

W
ER

C

AL
EN

D
AR

TI

M
E,

O

N
-B

O
AR

D

C
O

M
PU

TE
R

SP

AC
E

AN
D

TI

M
E

PO
O

R

VI
SI

BI
LI

TY

AN
D

TR

AC
EA

BI
LI

TY

AS
YN

C
H

R
O

N
O

U
S

AS
PE

C
TS

O

F
SO

FT
W

AR
E

AN
D

IT

S
IN

TE
R

FA
C

ES

C
LA

SS

O
F

PR
O

BL
EM

S
IN

C
LU

D
E

TH
O

SE

W
H

IC
H

AR

E
TI

M
E-

C
R

IT
IC

AL

AN
D

SE

LF
-C

O
R

R
EC

TI
N

G

(F
EE

D
BA

C
K)

U
N

C
ER

TA
lN

TY

O
F

H
O

W

M
U

C
H

TO

TE

ST
:

R
ED

U
N

D
AN

C
iE

S

AN
D

O

M
IS

SI
O

N
S

ST
AN

D
AR

D
S

AN
D

D

IS
C

IP
LI

N
ES

N

O
T

D
EF

IN
ED

AM
BI

G
U

O
U

S,

IM
PL

IC
IT

,
TO

O

D
ET

AI
LE

D
,

O
R

IN

C
O

R
R

EC
T

R
EQ

U
IR

EM
EN

TS

FR
AG

M
EN

TA
TI

O
N

O

F
PE

R
SO

N
N

EL

U
N

KN
O

W
N

H

AR
D

W
AR

E
EF

FE
C

TS

O
N

SO

FT
W

AR
E

SO
FT

W
AR

E
M

U
ST

AC

C
O

M
M

O
D

AT
E

H
AR

D
W

AR
E

M
AN

AG
EM

EN
T

PR
O

BL
EM

S
IN

H
ER

EN
T

IN

LA
R

G
E

SY
ST

EM
S;

TO
O

LI

TT
LE

O

R

TO
O

M

U
C

H

D
IF

FI
C

U
LT

Y
IN

M

EA
SU

R
IN

G

C
O

R
R

EC
TN

ES
S

O
F

SO
FT

W
AR

E

SO
FT

W
AR

E
N

O
T

TR
AN

SF
ER

AB
LE

SY
M

PT
O

M
S

R
AT

H
ER

TH

AN

R
O

O
T

PR
O

BL
EM

S
TR

EA
TE

D

SY
ST

EM

N
O

T
U

N
D

ER
ST

O
O

D

N
O

IN

TE
G

R
AT

ED

G
O

AL
S

N
O

IN

TE
G

R
AT

ED

M
ET

H
O

D
O

LO
G

Y

ST
R

U
C

TU
R

E
O

F
SY

ST
EM

D

EV
EL

O
PM

EN
T

PR
O

C
ES

S

N
O

T
FL

EX
IB

LE

EN
O

U
G

H

TO

EN
C

O
U

R
AG

E
M

U
LT

IP
LE

TE
C

H
N

O
LO

G
IE

S,

VE
N

D
O

R
S,

C

O
M

PE
TI

TI
VE

IN
N

O
VA

TI
O

N

AN
D

M

U
LT

IP
LE

SO

U
R

C
IN

G

D
IF

FI
C

U
LT

Y
IN

M

EA
SU

R
IN

G

EF
FE

C
TI

VE
N

ES
S

O
F

SO
FT

W
AR

E

M
ET

H
O

D
O

LO
G

Y/
TO

O
LS

C
O

ST
LY

AN

D

LE
N

G
TH

LY

EF
FO

R
TS

LA
C

K
O

F
SU

FF
IC

IE
N

T
D

O
C

U
M

EN
TA

TI
O

N
:

TO
O

LI

TT
LE

O

R

TO
O

M

U
C

H

TH
E

PR
O

BL
EM

S
O

F
PA

R
KI

N
SO

N
’S

LA

W

PO
O

R

C
O

M
M

U
N

IC
AT

IO
N

C
O

M
M

U
N

IC
AT

IO
N

LA

G
S

C
O

M
M

U
N

IC
AT

IO
N

IN

TE
R

FA
C

ES

N
O

T
D

EF
IN

ED

LU
R

KI
N

G

ER
R

O
R

S

uM
AN

-R
AT

ED
n

PR
O

LI
FE

R
AT

IO
N

O

F
LA

N
G

U
AG

ES
,

R
U

LE
S,

SY

N
TA

X,

TO
O

LS
,

AL
G

O
R

IT
H

M
S

C
AN

N
O

T
BE

VE

R
IF

IE
D

IN

TH

E
R

EA
L

W
O

R
LD

SY
ST

EM

D
O

ES

N
O

T
LI

VE

U
P

TO

EX
PE

C
TI

O
N

S

N
EE

D

FO
R

AU

TO
M

AT
IC

ER

R
O

R

D
ET

EC
TI

O
N

SC

H
EM

ES

LA
C

K
O

F
FL

EX
IB

LE

R
EC

O
N

FI
G

U
R

AT
IO

N

SC
H

EM
ES

DU

RI
NG

D
EV

EL
O

PM
EN

T
AN

D

R
EA

L
TI

M
E

M
IS

U
N

D
ER

ST
AN

D
IN

G
S

AB
O

U
T

C
AP

AB
IL

IT
IE

S
O

F
SU

PP
O

R
T

SY
ST

EM
S

LO
SS

O

F
PR

O
JE

C
T

C
O

N
TR

O
L

N
O

W

AY

TO

IN
TE

G
R

AT
E

DI
VE

RS
E

EN
VI

R
O

N
R

EN
TS

DE
SI

G
N

BY

AU
D

IT
O

R
IU

M

PA
R

AD
O

X
O

F
R

ED
U

N
D

AN
C

Y
M

AN
AG

EM
EN

T
SC

H
EM

ES

IM
PR

O
PE

R

ST
R

U
C

TU
R

IN
G

O

F
IN

C
EN

TI
VE

S
FO

R

C
O

N
TR

AC
TO

R
S

AN
D

G

O
VE

R
N

M
EN

T
M

AN
AG

EM
EN

T
PE

R
SO

N
N

EL

SP
EC

IF
IC

AN

D

N
AR

R
O

W

SC
O

PE
D

IN

TE
R

ES
TS

D
IF

FI
C

U
LT

IE
S

IN

PE
R

SO
N

N
EL

AT

TI
TU

D
ES

TO

W
AR

D
S

C
O

O
PE

R
AT

IO
N

FA
LS

E
EC

O
N

O
M

IE
S

O
VE

R

SO
PH

IS
TI

C
AT

IO
N

C
R

EA
TI

O
N

O

F
“U

R
G

EN
T“

PR

O
BL

EM
S

BY

FA
IL

U
R

E
TO

AN

TI
C

IP
AT

E

TR
O

U
BL

ES

O
R

R

ES
PO

N
D

EX

PE
D

IT
IO

U
SL

Y

Fi
gu

re

2.
 T

yp
ic

al

pr
ob

le
m

s
of

 c
om

pl
ex

sy

st
em

ef

fo
rt

s.

Functional Life Cycle Autorn~t~~~: WSE.IT 29

30 M. Hamilton and S. Zeldin

rive as well. A fixed syntax is not necessary to maintain
a desirable state; a fixed semantics is. In a historical
method, the opposite seems to hold true.

Within a historical model, the definition of require-
ments for a system invariably contains system imple-
mentation details which depend on either the type of
language it will be implemented in or which depend on
the type of computer environment it will be executed
in. Thus, if there is a new language or a new computer
introduced into the target system environment, a target
system has to be completely developed again from
scratch. Such a situation is indeed wasteful.

Attempts to accommodate the Historical Life Cycle
Model

Several attempts have been made by software tool de-
velopers to alleviate the problems of embedded system
developments. In fact in doing so, all of these tool de-
velopers are attempting to alleviate the problems of the
existing historical model. They, however, in attempting
to provide solutions, make the assumption that they
must include as part of their requirements the existence
of the historical model as a given.

For example, take the requirements phase, in the
traditional sense, which usually tries to address the
problem of user needs from the total system point of
view. Typical techniques that attempt to address the re-
quirements phase are SADT [3], and PSL~PSA [4]. The
use of these techniques, however, can result in error
prone requirements and as a result these techniques do
not lend themselves as either reliable requirements or
as a first step towards reliable code.

When system requirements are “completed,” usu-
ally marked by the appearance of a requirements “doc-
ument,” the parts of the system informally allocated to
software are used as input to the software specification
phase. The specification phase deals with software, as
opposed to system, requirements. Here, the designer
concentrates on defining the target system a little bit
better, adding a few requirements for how best to se-
quence operations, perhaps what computer to use, or
other “high level” resource allocation consideration.
There are, today, a variety of techniques that are used
for this phase: the SREM method of the SDS [51, War-
nier Orr [61, HDM [7], Information Hiding [81, Struc-
tured Analysis/Design [9] CADES [IO], etc.

Each successive phase from design to code adds
more and more detail to both the definition of the target
system and to the resource allocation of that target sys-
tem to a computer. Of course, the fact that the resource
allocation process itself must be defined (and itself re-
source allocated) only adds to the problems of what to
do at each phase. Recently, tools have been introduced

to enable users to create partial applications automati-
cally [1 l-l 51. However, complex logical and data ma-
nipulation functions still must be handcoded. To help
alleviate the problems here, programs are augmented
by sophisticated notational schemes, such as [16, 171,
beyond the patience (and time constraints) of the av-
erage programmer, or programs are abstracted by sym-
bolic execution techniques [18-201, rather than con-
ceived of abstractly to begin with, or programs are
subjected to time consuming test generation programs
[21, 221 rather than concentrating on maximizing
static analysis.

Similarly, there are other tools and techniques for
use in both the earlier and later phases of the historical
model. More often than not, these methods exist as a
result of or for supporting manual processes. Thus, they
are used, for example, to find errors. In fact, the errors
would not even be there if the other methods resulting
in the errors had accomplished the results they could
have accomplished in the first place.

It is true that some of these tools, or combinations
thereof, partially solve the problems of parts of the his-
torical model. But, there is no integrated set of tools
within the categories discussed above which tackles the
whole problem. The root problem that has confronted
software tool developers is that they are relating to and
depending on an inferior life cycle model. The solution
is not to support the historical model but rather to learn
from it and then to replace it. With such an approach,
history is used to support and not control an evolving
life cycle model. This is as it should be.

STEPS TOWARDS THE FUNCTIONAL LIFE CYCLE
MODEL

Efforts towards improving software techniques have
concentrated, until very recently, on better ways to talk
to a computer as opposed to better ways for users and
developers to talk to themselves or to each other. If we
review the evolutionary nature of software development
techniques (Fig. 4) it is apparent that the first and sec-
ond generations of software development were focused
around how to communicate with the computer hard-
ware. By the early 70’s however, both users and devel-
opers of software were keenly aware of the magnitude
of problems that were possible in embedded systems.
These problems were due to unreliable software and to
lack of formal means for users to communicate to each
other or their developers. The result was a split of ef-
forts in both directions, during the third generation,
where some people were concentrating on making more
reliable higher order programming languages and oth-
ers were concentrating on making more user-friendly
requirements/specifications languages. But the more

FO
CU

S
O

F

AP
PR

O
AC

H

__
__

__
 I _

__
__

DU
AL

RE
LA

T
1

O
NS

_-
 --

-_
__

__
 -

_

TI
M

E

FR
AM

E

1s
~

G
EN

ER
AT

IO
N

CO
M

PU
TE

R

AS
SE

M
BL

ER

AS
SE

M
BL

Y

LA
NG

IJ
AG

E

_-
__

__
__

__
__

__
__

19
50

’S

TR
AD

IT
IO

NA
L

AP
PR

O
AC

H

ZN
D

G
EN

ER
AT

IO
N

M
AK

E
IT

EA

SI
ER

FO

R
PR

O
G

RA
M

tIE
R

TO

TA
LK

TO

CO

M
PU

TE
R

__
__

__
__

__
__

__
__

C
O

M
P

lL
ER

I

HI
G

HE
R

O
RD

ER

LA
NG

UA
G

E
(H

O
L)

__
__

__
__

__
__

__
__

19
60

’s

SA
D

G

EN
ER

AT

I
O

N

CO
NC

EN
TR

AT
E

O
N

RE
Ll

AB
IL

lT
Y

AN
D

CO
ST

SA

VI
NG

S

IN

PR
O

G
RA

M
M

IN
G

PR
O

CE
SS

PR
EP

RO
CE

SS
O

RS

AN
D

‘S
TR

UC
TU

RE
DI

CO
M

PI
LE

RS
 t

ST
R

U
C

TU
R

ED

PR
O

G
R

AM
M

IN
G

__
__

-_
_-

-_
__

__
__

CO
NC

EN
TR

AT
E

O
N

TA
LK

IN
G

TO

TH

E

US
ER

-”

I
RE

Q
UI

RE
M

EN
TS

/
SP

EC
IF

IC
AT

IO
NS

LA
NG

UA
G

ES

EA
R

LY

19
70

’s

~T
H

G

EN
ER

AT
IO

N

C
O

N
C

EN
TR

AT
E

O
N

R

EL
IA

BI
LI

TY

AN

C
O

ST

SA
VI

N
G

S
f

FR
O

N
T-

EN
D

H
O

S
AN

AL
YZ

ER

LA

--_
-_

-_
__

T
E

19

70
’S

AX
ES

FU
N

C
TI

O
N

AL

G
EN

ER
AT

i
01

1

H
AR

O
W

AR
E/

SO
FT

-
W

AR
E/

F
IR

M
W

AR
E

BE
C

O
M

E
IN

TE
K-

C

H
AN

G
EA

BL
E

(A

FU
N

C
TI

O
N

AL

M
O

D
EL

)

*A

PR
O

BL
EM

AR

EA

FO
R

~S

YN
TA

C
TI

C
AL

~
O

R
IE

N
TE

D

FR
O

N
T-

EN
D

TE

C
H

N
IQ

U
ES

IS

D

EM
O

N
ST

R
AT

ED

BY

TH
E

FA
C

T
TH

AT

N
O

FO

R
#A

L
SE

M
AN

TI
C

S
E

X
IS

T
S

F
ig

ur
e

4.

T
he

 e
vo

lu
tio

na
ry

na

tu
re

of

 s
of

tw
ar

e
de

ve
lo

pm
en

t
te

ch
ni

qu
es

.

U
SE

.
IT

I

R
EQ

U
IR

EM
EN

TS

DE
RI

VE
II

FR
O

ri
AX

ES

19
80

’s

32 M. Hamilton and S. Zeldin

reliable higher order languages were not user-friendly
and they were still not reliable enough, and the user
friendly languages were friendly to select groups and
they were not reliable at all. It was at this same time
that our own staff was concentrating on both aspects of
the problem and as a result (see fourth generation)
came up with a formal requirements definition lan-
guage which was intended both to be used at all levels
of communication, including the user level, and to ad-
dress the issues of reliabifity, not heretofore addressed,
pa~icularly at the front end. It was now possible to pro-
ceed with the development of the model for the func-
tional generation. With the functional generation, one
is able to define systems, whether they be hardware,
software, humanware, or some combination, by merely
collecting modules from a library. There would only be
the choice of which “what” should be done and which
“how” it should be done by. Once such a choice is
made, the “what” and the “how” can be collected from
the library of system modules.

P~PERTI~S OF FUNCTIONAL GENERATION
SYSTEMS

There is a growing awareness, today, of the need for
quality metrics with respect to techniques and tools
used for systems development [23-251. In the process
of defining the functional life cycle model we found it
necessary to establish a set of properties for systems in
general. Towards this end, we defined a checklist of de-
sirable properties for a methodology’ [2], properties of
systems from a user point of view [26], properties of
systems from a requirements definition point of view
12’71, and properties of systems as criteria to evaluate
development methods [28].

The properties of concern here are those properties
that can be used to measure the adequacy of a solution
to the problem of developing systems. The result of such
a solution is an effective life cycle model for developing
a system. The output of an effective life cycle model is
a well-formed system.

First and foremost, a system must be scientifically
based (Table 1). It follows, then, that an effective sys-
tem for developing systems, including the well-formed
systems that are developed with the developmental sys-
tem, must be scientifically based. The system for devel-
oping systems must formally address practical solutions
to problems of development (e.g., elimination of errors,
avoiding constraints to creativity, eliminating unneces-
sary steps, etc.) including the practical solution of pro-

“‘Methodology” is used here in the general sense, i.e., a set of
rules that aid a designer in obtaining a solution to a problem.

Table 1. Scientific System Properties

Property Definition

Formal

Practical

If a system is consistent and logically complete,
that system is formal

To be practical, a system must have
applicability to the problem to be solved
(i.e., experimental results)

viding a means to define scientific-based systems. What
this means is that any effective deveIopment system
must be able to provide a means for expressing the
practical properties of any particular application area
(financial, avionics, communications, manufacturing,
etc.) in a formal way. However, an effective develop
ment system cannot guarantee that the designer that
uses it will capture all of the practical properties of that
designer’s application. An effective development system
can only guarantee the designer the formal and prac-
tical properties of a well-formed system.

By formal, we mean a system that has the properties
shown in Table 2. For example, a method for system
development may be consistent and yet apply to only a
part of the development process. That same method
may be considered formal if it completely addresses the
part of the development process it intended to address.
However, if that same method is intended to address
the entire development process and succeeds to ad-
dress only one part (or parts of several parts) it may be
consistent, but not logically complete and therefore not
formal. On the other hand, if a method is inconsistent,
then there is no way to show if it is logically complete.
Subsequently, such a system is considered informal.

By practical, we mean a system that has the prop-
erties shown in Table 3. These practical properties
(from the point of view of a system of properties) must
themselves be formally defined and practically based.
The formal properties in Table 3 are themselves based
on the practical requirements for methods which came

Table 2. The Components of Formal

Property Definition

consistent

Logically
complete

A system is consistent if it can be shown that
no assumption of the system contradicts
any other assumption of that system. One
way to show consistency is to develop a
model for the assumptions of the system
(e.g., the three primitive control structures
of HOS are models of the HOS axioms).

A system is logically complete if the
assumptions of the system completely
define a given set of properties. A logically
complete system has a semantic basis (i.e.,
a way of expressing the meaning of system
objects.

Functional Life Cycle Automation: USE.IT 33

about from the practical needs based on problems of
systems development indicated in the last column of
Table 3. If one considers the type of process around
which rules or standards are necessary, it is either one
of pulling apart or one of putting together objects. The
abstraction, integration, and applicative properties all
imply a process of going from many objects to one ob-
ject; de~om~sition, modularity, and computable all
imply a process of going from one object to many
objects.

Abstraction and decomposition are inverse proper-
ties. In the decomposition of a function, for example,
there are many possibilities for a chosen set of subfunc-
tions each of which collectively replace that function.
Once a set has been chosen, the function is decomposed.
Given only the sets of subfunctions, however, to start
with, one must abstract in order to find a function
which satisfies each collection of subfunctions. Decom-
position is “top-down” (we start, assuming the “top,”
and work our way down to communicate at the “bot-
tom”) and abstraction is “bottom-up,” (we start, as-
suming the existence of the “bottom” and work our way

Table 3. Practical System Properties

up to communicate at the “top”). We need rules on the
way up and rules on the way down. And, in the end, we
need to understand both the top and the bottom. Both
abstraction and decomposition are made up of other
properties. Table 4 is an example of component prop-
erties for abstraction.

Integration and modularity are also inverse proper-
ties. The integration, for example, of one function with
another implies that one of those functions has influ-
ence over the other (e.g., communication between func-
tions, or one function affects another’s timing). The
modularity property ensures that each function in the
integrated system is able to be selected as a separate
entity and stand alone as a self-contained system.
Proper integration calls for modular components while
the development of each modular component calls for a
means to integrate the subcomponents of that modular
component. Practically, “reusable” software compo-
nents have not been possible in traditional systems. The
fear of uncovering new interface errors by uncoupling
components embedded in larger systems has made even
static reconfiguration difficult, if not impossible. How-

Formal
property Definition

Practical method
requirements

Practical user
requirements

Abstraction

Decomposition

Abstraction refers to the ability
to recognize commonality
among a set of objects and
then to identify a unique
object for which any
member of the set can stand
for that unique object

Decomposition refers to the
ability to identify one of the
possible sets of subordinates
that can stand for a unique
object

Rules for deriving new
definitions ultimately
in terms of the same
primitive mechanisms

Ehminate ambi~ity,
simpiify complexity,

Rules for separating and
relating the “what”
and the “how”

Integration Integration refers to the ability Reconfigure component

Modularity

to connect system
components.

Modularity refers to the ability
to separate system
components.

environments

Reconfigure individual
components

Eliminate interface errors,
flexibility, reusable

Applicative

Computable

Applicative refers to functional
in the mathematical context
of function, i.e., the
relationship of input to
output. The input object
exists. The output object
exists. The function is the
relation such that each input
corresponds to one output.

If an algorithm can be
established to allocate to
each unique definition object
so that it is set up to execute
correctly on a machine then
that definition is computable.

Functional semantics

Functional instantiation

Eliminate unnecessary
error-prone steps,
flexibility, automation

Table 4. Component Properties of Abstraction

Formal property Definition
Practical method

requirements Practical user requirements

Data
behavior

Data behavior refers to the
common relatio~hips that hold
between members of a given
set of objects regardless of the
components or parts, of the
objects. For example, the linear
ordering relationship among
members of the data type time
is a behaviorial characteristic
of time.

Standard primitive objects Identify

Data
structure

Formal data behavior implies that
all derived data relationships
must be able to be traced to
common semantic primitives.

Data structure refers to the
common relationships among
~m~nents, or parts of an
object. Abstraction of data
structure refers to the ability to
define common patterns
between components of type
members without specifying
the particular instances that fit
the pattern, e.g., a rational can
always be replaced by a data
structure of two integers.

A data structure is consistent if a
function can be defined from
type to structure.

Standard primitive data
relationships

Identify object
impIementation
alternatives

Functional
behavior

For a data structure to be
logically complete, a11 derived
component relatio~hips must
be able to be traced to the
common semantic constraints
of the set of objects for which
it is a model.

Functional behavior refers to the
relationship between the input
and the output of a function.
Abstraction of functional
behavior refers to the ability to
state that relationship between
input and output without
specifying an algorithm for
how that functional
relationship will get
a~mplished.

Standard primitive Identify the “bottom” of a
operations hierarchy

Functional
structure

If the same input instance always
produces the same output
instance then the functional
behavior is consistent.

For functional behavior to be
logically complete each input
instance must produce an
output instance in accordance
with the input/output
properties.

Functional structure refers to the
relationship between functions.
Abstraction of functional
structure refers to the ability to
define ~mmon patterns
between functions without
specifying the particular
functions that fit the patterns
or the particular execution
model.

Standard primitive
functional relationships

Identify common functional
patterns

For functional structure to be
formal, all derived functional
relationships must be able to be
traced to common semantics
primitives.

Functional Life Cycle Automation: USE.IT 35

with properties of integ~tio~ and m~ularity not only
static reconfiguration, but also dynamic reconfiguration
is not only possible, but is also practical. Again, both
integration and modularity are made up of other prop-
erties. Table 5 is an example of component properties
for modularity.

Whereas applicative is the property of relating one
set of instances (domain) to another set of instances
(range); computable is the property of relating these in-

Table 5. Component Properties for Moduiarity

stances one pair at a time. That is, if you separate out
each “component” of the applicative mode (i.e., speci-
fication mode) you get the computable mode (i.e., exe-
cution mode): conversely if you put together all com-
ponents of the computable mode and do them “all at
once” (i.e., all instances concurrently) you get the ap
plicative mode. Practically, we need a means to deter-
mine what functions are necessary (and, once deter-
mined, identify which ones can be automated) and

Formal property

User
independent

Application
independent

Definition

The ability to define a system with
properties from which different
user models can be derived.
That is, such a system has no
knowledge of its users just as a
car does not need to know who
is driving it to run, or an “add”
instruction does not need to
know about the “square” or
“sum” users

The ability to define any type of
system

Practical method
requirements

Diverse users

Diverse appli~tion
environments

Practical user requirements

Design top-down or ~ttom-up,
maintain a multiuser
evolving library

intent
inde~ndent

Resource
~nde~ndent

The ability to define a system with
analyzable properties from
which different models with
those properties can be verified.

Diverse readership

The ability to define a system with
functional properties from
which different resource
allocation models can be
assigned (e.g., one allocation
model may be time optimized,
another memory optimized).

The ability to define a system with
computable properties from
which different models for
execution can be derived. A
system can be formally
computable and yet depend on
a particular machine type (e.g.,
the sequential nature of the
structured programming
execution-how control
structures) or a particular
machine of a type (e.g.,
company x, model y). If,
however, we can establish
~mputational abstractions,
different models for the
execution can be derived (e.g.,
the primitive control structures
of HOS allow for parallel,
sequential or multi-
programmed execution models).

The ability to define a system with
semantic properties from which
different syntactic models can
be derived.

Diverse optimization of
resource utilization

Diverse hardware
environments

Eliminates constraints on
creativity, eliminates need
to learn a new method for
each application area

Efiminates the need to
“‘return-to the author” for
clarification or tie assertion
statements of intent to
definitions

Eliminates the need to tie
requirements to resources

Transport from machine to
machine

Machine
independent

Syntax
independent

Diverse syntactic
models

Enhance other methods,
encourage user-friendliness

36 M. Hamilton and S. Zeldin

Table 6. ProDerties of HOS Svstems

Access rights

Ordering

Domain
identification

Maintain data security

Formal
property

Replacement

Definition

The ability to establish a relation in
a set of objects so that any
element can be substituted for
any other element with respect
to a unique object defined by
that relation.

Practical method
requirements

Standards for structure
integrity

Practical user requirements

Assures the “bow” conforms to
the “what”

The ability to locate an element of
a given set of variables and once
located, the ability to reference
or assign the value of said
element.

Standards for data flow

The ability to establish a relation in
a set of functions so that any two
function elements are

Standards for timing
flow

comparable in that one of said
elements preceeds the other said
element.

The ability to predict if a function
will or will not be able to
perform its intended function
and to identify unintended from
intended phenomena as part of a
function definition.

Standards for error
detection and
recovery

Inherently be able to identify what
can and cannot be done in
parallel, while maintaining the
ability to unambiguously decide
what comes first in cases of
potential conflict.

Be prepared for the unexpected,
provide outputs

what functions are sufficient (and, once determined,
eliminate the redundant and obsolete ones). Only by
separating the applicative property from the computa-
ble property can we find a means to deal with each
effectively.

Properties of HOS systems (Table 6) provide rules
for obtaining the practical system properties shown in
Table 3. These properties, in turn, are used to define
properties of the HOS life cycle model (Table 7). This

ensures that systems developed with the life cycle model
will have the same properties as those systems from
which they came.

We have used these properties as metrics for evalu-
ating development methods that span various aspects of
the development life cycle [28]. In addition to using
these properties as metrics for development techniques,
there are other advantages to having available such
properties that, on first glance, may not be so obvious.

Table 7. Properties of HOS Life Cycle

Formal
property

Management

Definition

Management provides for control
of a system. Control
encompasses which functions
are to be performed, input and
output rights to data, the
ordering of functions, the
relationship between input and
output, and what it means to
have improper input.
Consistent control provides for
the ability to adhere to each
aspect of control in a given
system without any aspect
conflicting with any other
aspect of control. Logically
complete with respect to
control provides for the ability
to trace the chain of command
with respect to each aspect of
control from level to level and
layer to layer of a hierarchy.

Practical method requirements

Control, goal-driven commands

Practical user
requirements

Eliminate interface errors
in chain-of-command

Functional Life Cycle Automation: USE.IT

Table 7. (continued)

Formal
property Definition Practical method requirements

Practical user
requirements

Definition

Analysis

Resource
allocation

Execution

Documentation

A definition of a system states
the meaning of that system. A
consistent definition of a
system is one in which the
meaning of that system can
only be interpreted in one
way. A logically complete
system definition is one in
which each system object can
be traced to primitive
semantic objects.

Rapid design rapid prototyping Eliminate interface errors
among users and
developers

Analysis provides for the
capability to determine if a
target system is a model of the
method used for definition of
that target system. Consistent
analysis implies that a given
target system will always
compare to the method used
for definition of that target
system in the same way.
Logically complete analysis
provides for the ability to
trace a target system as a
model of the method used for
definition of that target
system.

Eliminate interface errors
before implementation

A resource allocation assigns
objects to names and names to
objects. A consistent allocation
maintains the properties of
definition with respect to
assignments. Logically
complete allocation provides
for the ability to trace objects
to names and names to objects
with respect to properties of
definition.

Automatic programming Eliminate interface errors
between definition and
machine environment

Execution provides for the
instantiation of a target
system. Consistent execution
implies that a given model of a
target system will always be
performed in the same way.
Logically complete execution
provides for the ability to
trace an object as a model of a
target system.

The system works Eliminate interface errors
in real-time

Documentation provides for a
description of a system. A
descrjption is a symbolic
representation of a system-
one step removed from the
system itself. A consistent
description is one in which the
meaning of the symbols used
to define a system can be
interpreted in one way, A
logically complete description
provides a means to trace the
names of system objects with
respect to properties of
symbols

Eliminate interface errors
in describing what is
really there

38

For example, arguments for or against a particular
brand of automation can be evaIuated by determining
the necessity or sufiiciency of automating a particular
process. A start in this direction (with respect to tools
such as HOLs, PDLs, simulators, verification systems,
etc.) can be found in [281.

THE FUNCTIONAL LIFE CYCLE MODEL

The functional life cycle model is a formal model of the
functions and the relationships between those functions
which exisf in a system for effectively developing a sys-
tem. This could be a model for developing a software
system, a hardware system, a system of people, or some
combination of software, hardware, and people [27-
30].

The functional life cycle model is based on the HOS
theory [1,2]. HOS, a systems theory based on analysis
of large complex systems development, concerns,
among other aspects, the definition of systems so as to
eliminate data and timing conflicts. Systems, developed
using this model, are themselves viewed by the model
as data with respect to that model’s functions. In this

Figure 5. A definition of a functional life cycle process.

M. Hamilton and S. Zeldin

regard, each system that is developed with an HOS
model is inherently forced to be defined in terms of the
HOS theory in order to maintain the consistency and
logical completeness properties of the model in the ex-
ecution phase of its own development.

AN EXAMPLE OF THE FUNCTIONAL LIFE CYCLE
MODEL

The example of the functional life cycle model de-
scribed here has six major functions [28]. They are
Manage, Define, Analyze, Resource Allocate, Execute,
and Document. Although the function labeled “Define”
in Figure 5 is a de~nitional process with respect to the
target system being developed by the model, each of the
functions in Figure 5 is, generically speaking, a defini-
tional process, in its own right. That is, a definition re-
lates one object to another (e.g., relating a value to its
type). But, with respect to each given process, there are
certain relationships with other processes that have to
do with a development process [27]. That is, once a tar-
get system definition is completed, the target system is
related to other systems within the target system envi-
ronment in order to complete its development. The re-
lations themselves are other systems within the target
system environment. Specifically, once a target system
is defined, it is related to a set of instances, or their

NOTE: THE “PENCIL MARKS” ON THIS PIECE OF PAPER WHICH INCLUDES WORDS,

BOXES, ARROWS, ETC, REPRESENT THE DOCUMENTATION OF THIS PARTICULAR

VIEWPOINT OF THE MAJOR FUNCTIONS IN THE FUNCTIONAL LIFE CYCLE

PROCESS, AS WELL AS OF THIS PARTICULAR VIEWPOINT OF THE ENTIRE

LIFE CYCLE. THAT IS

I- 1 r I
” f

\

&)' = DOCUMENT (a)

THE WHOLE DIAGRAM REPRESENTS A DEFINITlON OF THE LIFE CYCLE WHICH

INCLUDES A PROCESS FOR THE DEFINITION OF THE TARGET SYSTEM.

Functional Life Cycle Automation: USEIT 39

equivalent, (or analyzed’), to “test it out,” related to a
machine architecture (or resource allocated4) to “im-
plement it,” related to instantiations (or executed’) to
“run it,” and related to a communications vehicle to de-
scribe (or document) it. That which “integrates” or re-
lates relationships between these processes is the
management.

Again, generically speaking, every process in the life
cycle could be viewed not only as one of definition but
as one of management or of verification or of resource
allocation or of execution or of documentation, since
they are all that when viewed with respect to the par-
ticular relevant target system as a definition (Fig. 6).
This is the very reason why people have arguments over
such things as requirements, specifications, and imple-
mentations, since one person’s specifications are an-
other person’s requirements. Similarly, one person’s

3The analysis process involves relating “what if” instances of the
target system environment (or the equivalent of having done so) to
the target system. An equivalent process might include a guarantee
that a set of rules were followed to put together a given system struc-
ture. (An analysis process, for example, would ensure that whether
or not a bus took off from New Jersey or Boston, it would still arrive
at its designated location, that is, if that was a requirement.)

4A resource allocation process relates the target system to a ma-
chine architecture system (or its equivalent). The machine architec-
ture will then become the place of execution of the target system. It
could be a computer, an operating system, or an algorithm within
which the target system resides. An assignment of a procedure to
memory is an example of a resource allocation process.

‘The execution process relates instances of the target system en-
vironment to a resource allocated target system. The execution pro-
cess would actively invoke the operation of the system by a user (real
or simulated).

specifications are another person’s implementation.
What is important, then, is to first agree on the target
system in question and then to agree on what its relative
phases of development are. Take, for example, the def-
inition of a target system. Within that definition each
object has to be acknowledged and related to a type
(definition), related to “what ifs” to see if it’s the right
relationship between the object and its type (verifica-
tion of that definition), related to a “machine” (re-
source allocation of that verified definition), related to
instantiations (execution of the resource allocated, ver-
ified definition). Take again, for example, the definition
of that same target system. It, itself, could be an in-
stantiation of another system. Now it is an input to the
execution process of that other system. All of these def-
initions, therefore, are what they are as a result of each
point of view of that definition with respect to its
relationships.

The entire life cycle model, if viewed functionally,
has to do with knowing how and when to recognize a
problem (or part of a problem) to be solved and then
solving it. A major emphasis is placed on being able to
tell the difference between a problem and its solutions.
This is part of what we refer to as “keeping the layers
straight.” Understanding each point of view of an ob-
ject and its relationships goes a long way towards un-

Figure 6. Every life cycle process is dependent on viewpoint
and in terms of each other: The definition of the life cycle
model is made up of definitions in terms of the life cycle
model.

/ DEF’NE/ /7 WHICH IS CONTAINED IN THE

FORM OF ‘lPENCIL MARKS” ON THIS PIECE OF PAPER.

40

derstanding a particular “what” with respect to its
“bows” which themselves are “whats” in their own
rights. Then the issue of differentiating between a prob-
lem and its solution becomes one of relating one defi-
nition to another. In the continuing “matching” pro-
cess, the relationship of each object that was related
(where that relationship is itself an object) can then it-
self be related until a system is finally complete in its
development. Relationships are defined in terms of
more primitive relationships. Once previously defined
relationships are verified, a new relationship, defined in
terms of the more primitive ones, need only be verified
at its own level of the system definition. In such a way,
structure integrity, as the structure evolves, can always
be maintained [27].

In the functional life cycle model, the definition is
implementation independent and execution indepen-
dent. These processes appear to be sequential (i.e., de-
fine, analyze, resource allocate, execute) but they are
not necessarily sequential for it is possible, for example,
to set up resource allocation and execution of the target
system concurrently or provide outputs before inputs
when “executing” the model itself.

USE.IT: THE AUTOMATION OF THE FUNCTIONAL
LIFE CYCLE MODEL

USEIT is an automation of the functional model de-
scribed above. USEIT is an integrated family of tools
for automating a system’s life cycle (Fig. 7). That is,
there is no need for manual intervention in a system
development process once a set of requirements has
been stated by a user. Backus alludes to, according to
[3 11, for the future, a functional front-end approach
that is inherently computable. USEIT is currently able
to accomplish this task because of the particular set of

Figure 7. Functional life cycle process with USE-IT.

M. Hamilton and S. Zeldin

properties inherent in HOS-based systems [27].
USE.IT can be considered as a “development machine”
in that processes in a life cycle, traditionally thought of
as manual ones, can now be automated. In fact, the def-
inition process, itself, is supported by automation with
USE.IT. That is, USE.IT will develop a system once
you tell it what you want to do-correctly, that is. It
will not tell you what you want to do. It will, however,
help you tell it what you want to do. USEIT and the
systems developed with it are all based on the HOS
theory.

The functional life cycle process with USE.IT works
as follows.

AXES: Define the Requirements

The first step is to define the requirements. This step is
performed with the requirements definition language
AXES or with AXES library mechanisms which have
themselves been defined with AXES [32,33]. At this
time the user, if he wishes, is supported by interactive
aids which assist him in defining his requirements either
in statement or graphics form. He is reminded, for ex-
ample, if he states requirements that are inconsistent,
incomplete, or redundant. This is especially important
because it is at this time that the user is not always sure
of what it is he wants to have his system accomplish and
AXES assists him in understanding his own require-
ments, The developer can use the same mechanisms to
try to understand the user’s requirements. AXES, which
is itself based on the HOS theory, provides the user the
means to define systems based on the HOS theory. It is
this one fact that makes AXES defined systems unique.

Three basic types of mechanisms are used to define
systems: data types, functions, and structures. One can
define systems with primitive mechanisms and one can
define systems with more abstract mechanisms. All ab
stract mechanisms are ultimately defined in terms of

TARGET

VizM
DEFINED

MANAGE
with USE.IT

4 DEFINE - ANALYZE ---) RESOURCE

with lXBs
ALLOCATE - EXECUTE -

with ANALYZER
with RAT with Udn

*

EXECUTION
OF SYSTEM

Functional Life Cycle Automation: USE.IT 41

the primitive mechanisms. A major emphasis of AXES
is that it is a language for defining mechanisms for de-
fining systems. Although the mechanisms adher to
AXES semantics, the syntax is up to the user. A set of
AXES mechanisms forms an AXES library. Use of com-
mon mechanisms is obtained by either common use of
the same mechanisms or by various derivations from
existing mechanisms. Derived mechanisms, in turn, are
added to the library for common and standardized use.

There is a hierarchical breakdown of use of mecha-
nisms in the AXES library. That is, any system can be
defined in terms of the primitives (Fig. 8). There is also
a set of abstract mechanisms, defined in terms of the
primitives, that are universal in nature in that any sys-
tem definition process can be accelerated by the use of
these more abstract mechanisms. There are families of
systems which share in common a particular set of even
more abstract mechanisms than the universal ones. In
fact, the very fact that a set of systems share a set of
mechanisms, in common, that another set does not
share, in common, is one way of distinguishing these
two sets of systems. This process determines which sys-
tems fall into distinct families of systems or a distinct
family or a distinct system. As we define a wide variety
of diverse system types with AXES we continue to learn
more about “natural” functional divisions in regard to
hierarchical families of systems.

Although AXES is a language, AXES is unlike soft-
ware specification languages. In fact AXES can be used
for specifying systems other than software, such as
hardware and people systems. Interactive AXES pro-
vides decision support mechanisms. If a user, for ex-
ample, has a syntax or a language that is ambiguous,
AXES interactively works with the user in order to make
it unambiguous [39]. Thus, it is possible for a user to
use his own syntax or existing front-end syntax oriented
techniques for user friendly reasons. In doing so, what-
ever means of communication is employed, the resul-
tant definitions in terms of that communication vehicle
will have the same rigor as AXES. In addition, defini-
tions in terms of more than one kind of communication
vehicle can be integrated as if they were part of the
same system. With this capability, AXES provides a
means for diverse users and for users and developers to
speak the “same” language.

AXES specifications can also be transformed to other
representations by translation of a proper subset of its
properties. Automated means can provide projections of
an AXES specification in terms of data flow diagrams,
priority diagrams, structured design diagrams [40,41],
syntax oriented techniques, and other representations
such as Higher Order Languages, or machine
languages.

Although AXES is a language, it is not a program-

ming language. Not only is AXES a nonprocedural lan-
guage, but a set of AXES statements allows for many
options of implementation both in nonsoftware environ-
ments or at the programming stage of development in
software environments. That is, from one definition in
AXES a system could either reside in, e.g., a distributed
or a sequential environment or it could reside in, e.g.,
an ADA or FORTRAN environment or it could reside di-
rectly on various computer architecture environments.
It is thus an implementation independent language.

Analyzer: Analyze the Requirements

Once the requirements have been defined with the AXES
component, the Analyzer component of USE.IT ana-
lyzes the AXES defined requirements [1,42,43]. Once

the Analyzer (with interaction from the user if the
Analyzer finds a problem) has completed its job, the
requirements are consistent and logically complete. The
Analyzer insures logical completeness by detecting
missing functions or missing data and by guaranteeing
that the hierarchical definition stops at primitive oper-
ations on algebraically defined data types, insures con-
sistency by enforcing correct interfaces and correct
data flow (thus data and timing conflicts are resolved),
and integrates system modules by checking across in-
dependently developed modules and checking defini-
tions of “library” modules.

RAT: “Program” the Requirements

The next step is performed by the Resource Allocation
Tool (RAT) [1,441. Here, a given analyzed AXES speci-
fication is itself treated as data and transformed to an-
other representation. Different representations gener-
ated in this manner are referred to as layers of
implementation.

Although the RAT produces code automatically, the
RAT is not just a code generator. The RAT is an auto-
matic programmer. That is, the RAT reads in unambig-
uous requirements from any problem domain, received
from the Analyzer, and produces source code from
those requirements. The code produced by the RAT

could be an HOL source code, machine language code
or, for that matter, commands to a robot. Boehm [45]
referred to Automatic Programming as

The ultimate in program generation capability, in which
a user begins to specify his derived information process-
ing activity to an automatic programming system, which
then asks him questions to resolve ambiguities, clarify re-
lationships and converge on a particular program speci-
fication. The system then automatically generates a pro-
gram that implements the specification.

M. Hamilton and S. Zeldin

Functional Life Cycle Automation: USE.IT 43

He then goes on to say that “ . . . automatic pro-
gramming systems are still somewhat beyond the cur-
rent frontier of the state-of-the-art.” But the reason
that USE.IT is able to automatically program is be-
cause the Analyzer ensures that the RAT receives un-
ambiguous requirements.

The RAT also provides the end-user with the capa-
bility to reconfigure to any language or machine envi-
ronment desired, whenever desired, without modifying
the requirements definition. Since the Analyzer has
guaranteed that the requirements used by the RAT are
consistent, the automatic programs produced by the
RAT are also consistent. Not only are the initial require-
ments defined by the user guaranteed to be interface
error free after the “programming” phase of develop
ment, they are also guaranteed to be the same ones the
user defined.

The RAT generates simulations from control maps in-
volving unimplemented primitive operations, generates
efficient implementations from control maps involving
implemented primitives, provides an advanced capabil-
ity for implementing basic primitives in an HOL (e.g.,
FORTRAN) that far exceeds the capability of that HOL
by itself, and permits inclusion of existing HOL pack-
ages into the user library as external operations.
Whereas in a historical mode1 the programmer goes
through a design and code phase manually, in the func-
tional mode1 the developer designs by choosing which
RAT he wants. The RAT then performs his coding
automatically.

The Same set of requirements that has been “ratted”
to one environment (e.g., FORTRAN) can be ratted to an-
other environment (e.g., ADA). This means, for exam-
ple, that developers who are anxious to start to use the
ADA DOD standard language but who do not have the
compiler and other support tools yet available can de-
fine their requirements in AXES and rat them to FOR-
TRAN or to some other HOL environment until ADA is
available. They can then simply rat them to ADA when
ADA is ready. It also means that developed systems are
never obsolete just because there is a new language or
a new computer system introduced within an
organization.

HOM: Execute the Program

If “ratting” produces HOL code, compilation, of
course, is necessary before execution. If machine code
were “ratted,” this would not be a necessary step.

The final step in the USEIT software development
process is the execution step itself where a Higher
Order Machine, the HOM, is the particular machine
configuration that executes the “ratted” requirements.

Documentation with USEAT

USE.IT is self documenting in that the AXES front end
produces a documented hierarchy of the requirements
for the user. The analyzer produces documented error
messages if there are errors, and documents the fact
that there are no errors, if there are no errors. The BAT
will produce documented code if asked to do so. Addi-
tionally, a plotter, which is one of the USEIT support
tools, will produce documented plotted output of the
system requirements if requested to do so.

Management with USEAT

Management properties are inherent within USE.IT.
That is, in a historical model management is something
to be contended with, additionally or after the fact;
management in the functional mode1 is part of the
model, itself. Each function is a manager, both in the
target system development and in the target system.
Each integration of functions, itself a function, is a
higher level manager than the functions it integrates.
The more abstract a definition becomes, the less there
is for human management to perform with respect to
that system [301.

Some management issues, in the use of USE.IT, still
remain to be resolved by individual project managers.
In our own experiences, we find ourselves resolving is-
sues such as:

What happens if a user(s) submits the same mechanism
(semantically) more than once in different syntacti-
cal forms?

What happens if the same name is given to two differ-
ent mechanisms?

When should more abstract mechanisms be constructed
for common use when combinations of mechanisms
are used or could be used quite frequently?

Should users be forbidden to use combinations of more
primitive mechanisms when more abstract mecha-
nisms exist?

Should seemingly arbitrary rules exist such as limita-
tions of length in English descriptions?

Which parts of the syntax should always be standard-
ized? That is, if one person turns in graphics and an-
other English, should both be accepted, neither, or
should each person be asked to submit all known
syntax forms for each mechanism?

If a better syntactical form is realized, should all exist-
ing mechanisms be updated to report the change?

What aspects of mechanism building should be frozen
for a given project development?

Which mechanisms or aspects of mechanisms should be

44 M. Hamilton and S. Zeldin

coordinated with other management in the project
before they become part of the ongoing language of
that project?

What are the various categories and dimensions of cat-
egories that should or could exist in the library?
Should they, for example, be categorized by project,
basic types of mechanisms (e.g., data types), layer of
deveIopment (e.g., requirement layer vs code layer),
type of mechanism with various syntaxes, or by hi-
erarchical breakdown of use (by application
family)?

Each issue, however, and its resolution is far more
understandable in terms of a functional model than it
is in terms of a historical model. And, there are simpler
and fewer issues to resolve.

The AXES Library: A Functional Language And A Set
Of management Standards

With the functional model, any set of mechanisms and
any set of syntax can be selected or defined provided
that it is acceptable to the particular environment
where that syntax is to be used. Just as freedom is with
respect to any other phenomenon, however, freedom in
this case, as well, is something to be respected. That is,
if there is freedom with respect to the particular mech-
anisms chosen, or in the use of syntax for those mech-
anisms, that freedom should be capitalized on but not
misused. The responsibility of such a process, should
this freedom be exercised, should be one of project
management.

Whatever the case, the very choice of each mecha-
nism and the syntax that goes with it determine not
only the language that is to be used on the project for
defining the requirements, but, it also determines, to a
large extent, the way that the people who are involved
on the project relate to each other and how they think,
individually or collectively. That is, as new mechanisms
and syntaxes are added or deleted, the language used
for both the system being developed and by the people
working on it, evolves as well. In such a way the so-
phistication of both the methods used on the project and
the people on the project evolves together. There is,
therefore, no need to live with an obsolete method of
communicating, since the new means have been defined
in terms of existing ones; yet the previous work does not
have to be thrown out. We thus have a language where
the language is what it is, since by doing it becomes. In
essence, then, the state of the library is the state of the
language; the state of the language is the state of the
management standards; the library is the language; the
language is the set of management standards.

The Integration of USEAT

In its final and integrated form, USEIT provides for
an automated life cycle process which eliminates the
need for manual intervention. It not only provides a
strict separation of the specification of a system from
its implementation, but it permits a totally automated
implementation of a system from a completely ma-
chine-independent speci~cation. A friendly interface
with automated decision support is provided by the user
friendly package, the system is specified with AXES, the
definition produced is checked for consistency by the
analyzer, the verified definition is resource allocated by
the RAT, and the verified, resource allocated system def-
inition is executed on the HOM. USE.IT is not re-
stricted to a particular language or machine environ-
ment or to the type of user friendliness desired at the
front end of a development process. The use of USE.IT
is not restricted to any application area. The USE.IT
~om~nents, themselves, are defined in terms of AXES.
And, all configurations of USE.IT have the same basic
core and standardized units (Fig. 9). Once a set of re-
quirements is defined, USE.IT is able to completely
“develop” a system.

The functional life cycle model, upon which USE.IT
is based, is a departure from the historical life cycle
model. We summarize here differences between the
functional model and our own experience on APOLLO
[11. Whereas in a traditional model, the majority of er-
rors found are interface errors, in a functional model
there are no interface errors. In a traditiona model,
these errors are either found manually or by dynamic
runs (usually after implementation); in a functional
model these errors are found by automatic and static
analysis (before implementation). In a traditional
model requirements are known for being inconsistent;
in a functional model they are guaranteed to be consis-
tent. In a traditional model, programming is manual; in
a functional model the programming is automatic. In a
traditional model there is no guarantee of maintaining
the function integrity of the requirements after imple-
mentation; in a functional model there is a guarantee
of maintaining function integrity of the requirements
after implementation. In a traditional model require-
ments from different types of users are defined with dif-
ferent types of requirements definition techniques and
cannot be integrated; in a functional model, require-
ments definitions (and thus their implemen~tions) can
be integrated. The traditional model is known not to be
cost effective. Conservative estimates are that the func-
tional model with USE.IT could cut costs by at least
75% when compared to the traditional model (see sec-
tion on productivity below).

IN
-L

IN
E

RE
Q

UI
RE

M
EN

TS

DE
FI

NI
TI

O
N

PR
O

CE
SS

G
EN

ER
AT

ES

RE
Q

UI
RE

M
EN

TS

(W
IT

H
I

TE
RA

CT
IV

E
SU

PP
O

RT

r

1
SY

NT
AC

TI
CA

L
t

1
iif

.+
”

‘
-1

__

__
__

b
AN

AL
YZ

E!

-I

G
EN

ER
AT

ES

CO
NS

IS
TE

NT

RE
Q

UI
RE

M
EN

TS

I
ET

C.

DA
TA

FL

O
W

-

-l

-

m

I
.

FO
RT

RA
N

-

.
AD

A

t

RA
T

CO
M

P
I L

ER
/

--
-+

4-

CO
M

PU
TE

R

1
I

I
G

EN
ER

AT
ES

CO

M
M

AN
DS

(E
.G

.,
CO

DE
)

A
LL

AP

PL
IC

AT
IO

NS

*

EV
O

LV
IN

G

US
E,

IT

LI
BR

AR
Y

r

4 cb

l-

F
ig

u
re

 9
.

U
SE

.I
T

sc

en
ar

io
s.

R

46 M. Hamilton and S. Zeldin

The Development of USEAT

USEIT was defined with AXES. It was first imple-
mented in PASCAL and FORTRAN by conventional
means. Now that this internal bootstraping process has
taken place, we are now in the process of redeveloping
USE.IT in terms of itself.

Figure 10 summarizes the HOS life cycle evolve-
ment. Figure IO(a) summarizes the evolvement of the
AXES user friendly package for defining a system. Here,
empirical data from experiences of developing large
systems, existing technologies, theoretical studies, etc.,
As, was used to derive axioms and objects for defining
systems A.+ [I]. Primitive mechanisms, in turn, for de-
fining data types, functions, and structures were derived
from A, and A, [21. Again, based on A,-A,, the AXES
technique A, itself was derived [33]. Similarly, AXES

mechanisms were created based upon A,-A, and user
friendly operations (UFO) were created based upon
A,-A, [2]. The user need only interact with A, since
the other functions that & is derived from are already
an integral part of the automated life cycle process.
And as time goes on, the interaction with the AXES
UFO will be minimized even further.

Figure 10(b) illustrates the evolvement of the Ana-
lyzer user friendly package for analyzing a system def-
inition. Here Bz is shown to be derived from A,,-AS, al-
though A, itself, must go through B as a next step.

Figure 10. HOS life cycle evolvement. (a) The HOS life
cycle definition language: AXES. (b) The HOS life cycle ana-
lyzer function: Analyze.

Likewise, the analyzer, itself, is a system which must
go through the whole development process on a target
system just like its target system. Likewise, it is a subset
of the AXES mechanisms, but it needed information of
A,-A, to help determine which of those mechanisms
were to be related or, in fact, identified. But the AXES
mechanisms have to be analyzed. Thus the Analyzer is
capable of analyzing itself. (Of course, initially there is
a bootstrap process.)

Figure 10(c) illustrates the evolvement of the RAT
user friendly package for resource allocating a system
definition to a particular machine architecture or set of
resources. Here C, is shown to be derived from C, and
C,. The RAT process, itself, is a system and therefore
must go through the process of development just like
the target system. That is, the RAT is derived from B
which is derived from Ao-A,, since it is defined using
AXES, analyzed using the analyzer, and finally itself
“ratted” in order to “rat” other systems. Figure IO(d)
illustrates the evolvement of the higher-order machine
for execution of a target system (461. Here, it is shown
that the machine itself is both based on and defined,
analyzed, and resource allocated with the HOS life
cycle model.

Here, then, is a life cycle process, itself a system de-
veloped with its own model, where the functions and
their relationships are well understood. It is recursive in
nature from several viewpoints, where the target system
and the machine itself will eventually be developed, de-
rived from and using the same principles (Fig. 11). We
can take advantage of this fact in many ways. In the
resource allocation process, for example, systems are

USER FRIENDLY OCCRAl’lOI4S

FOI otCINITIOMs

USER FRWNOLY

ocmTroas ran

B3

/

A

\

(b)

Functional Life Cycle Automation: USE.IT

USER FRIENDLY

OP’ZRATIONS FOR

RLSOUMI rUOuTlOII

USER FRIENDLY

OPCRATIONS FOF

D3
/

C
\

(cl

related which have the same generic properties. Thus a
complete system and its environment are able to capi-
talize on the benefits one gains from a functional life
cycle model. As another example, evolving machine in-
dependent definitions can be useful. One use is operat-
ing systems which can be viewed as layers of interme-
diate machine architectures. Such layers come in handy
as “break off’ points for machine transferability re-
quirements or constraints [30]. Figure 12 illustrates
these concepts within the life cycle model. Here, we
show an operating system as an intermediate machine
concept where a target system is an instantiation of
something to be run by that machine. Similar break-
downs can be defined with algorithms, in general.

THE DEVELOPMENT OF THE LIFE CYCLE MODEL

The life cycle model is a complex real-time large-scale
system just like a radar system or a missile system.
USE.IT, for example, is one part of the life cycle. So-
phisticated concepts, therefore, such as communicating
asynchronous and concurrent processes, synchroniza-
tion, and reconfiguration must be contended with in de-
fining and developing such a system. Examples of struc-
tures that are used for these types of phenomenon can
be found in [47]. Figure 13 illustrates the use of HOS
for defining a small part of a life cycle model. Such a
part could exist in, for example, the definition process
of the life cycle model. Here we show the definition of
a communicating, asynchronous, concurrent structure,

(d)

Figure 10. (continued) (c) The HOS life cycle resource al-
location function: RAT. (d) The HOS life cycle execution
function: HOM.

the EXCHANGE structure [47]. This structure can be
used in any problem domain. We have taken the EX-
CHANGE and annotated it with life cycle model terms
for purposes of demonstration, only.

In this particular illustration the structure is named
“Xchevery” [Fig. 13(a)]. Here we have a user and a
developer defining requirements. The user and the de-
veloper each go through several iterations of the defi-
nition process. Both are processing concurrently and
asynchronously. Occasionally each is to update his own
set of requirements with the other’s, but it is up to each
individual process when this event takes place. This
process continues until Preliminary Design Review
(PDR) timing determines that it stop. We show here a
“development” of this particular part of the life cycle
model, as opposed to developing something with it. (We
will show later, in this paper an example of a system
developed with USE.IT.)

Since the system Xchevery is specified in terms of
AXES it is defined with structures, functions, and mem-
bers of algebraically defined data types. Some of these
units are primitive and others are defined in terms of
primitives. For example, in Figure 13(a) the structures
used are the primitive structure, JOIN, and the ab
stract structures COOR and COINCLUDE [2]. The
functions are on each node of the hierarchy. Here, for

M. Hamilton and S. Zeldin

/

I

\

Functional Life Cycle Automation: USE.IT 49

F EXECUTE

NOTE 1:

\ For this particular procass, the
Top-Level Functional MANAWlENT

J

F FANALYZ

RAT

A gl-DIRECTIONAL FUNCTIONAL LOOK AT THE HOS LIFE CYCLE

X represents input to the target system

A represents target system
OS represents machine independent operating system

MOS represents machine dependent operating system
HOfi represents higher order machine for HOS

NOTE 2: In addition to any target system,
OS, MOS, HOfl, execute, analyze,

RAT and AXES could as uetl be X
or A (being or doing) depending
on view point with respect to

the development process.

NOTE 3:

example, Clone1 is a universal function in that it is ap-
plicable to any data type [2]; Xchevery is a recursive
function (see third level) in that it is invoked by a func-
tion, Update, which is invoked by Xchevery on the top
node. The data types in this system are Ordered Sets
[2] and Naturals [33]. R, for example, is a member of
Ordered Set and n is a member of Natural. Xchevery
controls the functions immediately below it with a
COOR structure, a structure for making a decision.
That means that either Clone1 or Update will be per-
formed. If Clone1 is performed, the most recent require-
ments are frozen and the process of defining require-
ments is complete. If Update is performed, then Update
controls the functions immediately below it with a
JOIN structure. The JOIN is used for communication
of processes. Here, the output of Incorp is received by
Xchevery as input for another recursive round of
Xchevery. Incorp controls its lower level functions with
a COINCLUDE structure, a structure used for parallel
processing. Here, both Decision,@, and Decision,,
are able to be processed concurrently. Each of these
functions make use of the structure, Decision [Fig.
13(b)]. Decision has one variable function F and an op-
eration on Ordered Sets, Integrate, which creates one

Each F is a manager

Figure 12. A bidirectional functional look at the HOS life
cycle.

Ordered Set from two Ordered Sets as inputs. In using
DECISION, Xchevery either “plugs” User into F or
Developer. Note that although, for example, De-
cision- has two inputs, its lower level function, De-
veloper, when plugged into F in Decision can begin as
soon as it receives its own input. Likewise this is true
with Decision,,,. Note that a structure can be used,
once defined, as a more abstract entity [Fig. 13(c)]. For
more detailed discussion of how to interpret the mean-
ing and use of many of the structured mechanisms used
here see [21.

An example of a USE.IT development session with
these user requirements is shown in Figure 14. Here the
updated requirements to Xchevery are Xchevery itself.
To illustrate, further, the “generics” of systems, we
have included (Fig. 15) excerpts of a USE.IT session of
a system which uses the same Exchange structure as we
used (i.e., Xchevery) for the life cycle model for asyn-
chronous and concurrent communication between a
pilot, operator, plan, radar, and missile.

M. Hamilton and S. Zeldin

Dm)

Where U,, U,+l, Dm,
Dm+l, R are
Ordered Sets of AXES
statements;
Where n, m are Naturals;

DecisionDe,eloper(un*Dm)

STRUCTURE: R,+l - Decision(R",Cm)

Ready to integrate (n)

A

Where R,,R,+l,C, are
CDOR Ordered Sets of AXES (b)

statements;

R,+l = F(R,) R,+l = Integrate &R,,C,)

fln*Dm) [c)

R = Xcheveryuser,Developer(un,Dm) R =/User(Un,Dm)
\

R = Developer(U,,Dm)

Figure 13. An example of the use of HOS for defining a part
of its own life cycle. (a) Structure for defining communicat-
ing processes which are synchronous and concurrent. (b)
Structure for deciding when to incorporate other require-
ments into your own. (c) Two syntax options for use of struc-
tural Xchevery.

THE TRANSITION FROM THE HISTORICAL
MODEL TO THE FUNCTIONAL MODEL

The introduction of the functional life cycle model
within an organization which is now using the historical
model is not unlike the introduction of computers in the
fifties when organizations were using mechanical cal-
culators. The introduction of a functional model, in sys-
tems already deployed or far down the line in the de-
velopment process, is not an easy job. In some cases, in
fact, it is almost impossible. There then becomes the
unenviable choice of either fixing existing systems or re-
doing them completely over again. Often, it is much
more cost effective in the long run to start over, al-
though such a fact is not obvious until it is too late in
that much time and money is wasted in finding this out
by attempting to fix a system first. This is often true
when requirements for a particular system are in a state

of flux. For those systems which have more or less sta-
bilized, or for those systems which are near obsoles-
cence, a complete redo may not be such a wise choice.
But for those systems which are near the front end in
their development or which are changing almost as
often as to behave as a new system, there appears to be
no reason why the use of newer techniques would not
be a major consideration (see discussion of Table 10).

With those systems where a decision has been made
not to change over to new techniques there are still
some benefits that can be obtained by using the new
techniques as a support tool to existing techniques. An
attempt can be made, for example, to take an ongoing
specification to a parallel prototype one using the new
techniques. Such an effort is very effective as a front-
end verification and validation tool, since many errors
can be uncovered in the translation process. Not only
does this process find errors, but it finds errors without
running the system dynamically and it finds them early.
The new converted specification can also be used as a
means of understanding the original specification if it is
still considered desirable to keep it intact as the primary
system. And, eventually if the primary system has had
so many changes as to be unwieldy, there is always the
back-up system to transfer over to should such a trans-

Figure 14. Xchevery development session with USE.IT
[49]. (a) The analyzed definition. (b) Excerpts of FORTRAN
code (automatically produced by USEAT). (c) Some results
of execution.

KECIW:
IFww2’.E4.‘vw12%0 m so010
J40W11
3OOli I=t,J

(b)

PI

(Cl

9

M. Hamilton and S. Zeldin

-1
I

I

I
I

5 I

I

I

I
I
I
I

I

C
O

D
E

w

cm
5:

v4

4
4
3
=-

1
.

v4
4
4
lll

)=
vw

2
lll

~
V

M
O

llZ
l=

V
W

2
lZ

lM
M

3

w
4
ol

l3
l~

l3
w

4
o3

vw

w
jy

(o
o6

lll
~1

1
lJ

vM

l2
k
w

l1
2
w

4
5
6
vI

o#
o

W
0
0
lw

=M
w

t1
3
l

~l
W

00
11

1l
~1

1~
tV

Q
00

11
2~

~V
00

01
l2

~~
V

00
01

13
l~

V
Q

00
11

31
~H

O

1
 .5

E
C

IF

lm
M

u
I.

W
O

O
C

lY
l

IF
 w

o7
.E

o.
lla

m

 2
5
1

vw
oc

==
~

w
bl

ll
~

=
w

ll
lN

w
o4

vw

l~
2)

--
v)

#
i(

2M
w

w

w
ol

(3
k

w
l(

3w
m

w

2u
~

~
m

w
l(

l~

w
l2

(2
k

vm
(Z

)~
(2

)
w

l2
(3

bw
N

l~
3)

~
~

31

w
l#

Jk
w

24
(3

)
W

W
2b

W
O

l4
~

2)

w
l3

m
w

l4
(1

)
(d

50

C
W

IN
E

w

cm

lw
co

 0
 0

.I

.I
.I

vo
ol

ol

W
&

l
9l

1’
11

01
0l

l~
.L

.W
Q

S
(1

ll~
.a

.lW
03

(l2
~.

Y
.v

W
14

~2
l~

~V
~

IF
lw

lo
1
3
l.
Y

.w
o3

4
l3

~w
4
5
=4

IF

 1
w

om
.T

o.
lla

 TO
 7
1

W
O

ll=
W

U
1
ll

w
l3

=
5.

vw

l2
4

IF
1W

ll.
E

O
.W

l3
N

W
?=

l
IF

 lv
w

.E
o.

1
la

m

 1
2
1

u
u

 c
aw

t1
1
.,

0
.,

0
.,

vw
?l

u

u
 s

E
Q

Iv
E

lv
IQ

33
,w

o3
(,w

o1
7,

w
o1

4,
w

o1
5,

w
o1

0
w

lM

3
lu

lI
w

ol
5
,m

o2
5
,m

4
lll

)
IF

 lv
o5

m
.o

p
.l
la

 m
 I

H

C
Y
L m

sn
K

lw
M

5
,m

o1
4
,v

4
o3

4
,v

w
3
l,
vM

2
E

,v
M

2
9
,v

4
4
3
2
,v

w
l6

,v
M

1
2
0
,w

o2
l,
w

o2
2
,w

o2
3
,v

,v
M

2
5
)

m
m
 1
1
2

-
._

 _
-

1
0
1

C
m

Im
E

cy

Ly
u

D
lt

l~
4,

w
oI

5,
w

,~
,w

os
,w

o3
o,

w
Q

3l
.w

oz
Q

,v
M

1

lc
,w

e4
,w

E
5,

v#
zL

,w
,w

23
~

la

2
C

m
lm

E

F
ig

ur
e

15
.

A
 m

is
si

le

ac
qu

is
iti

on

sy
st

em

ta
ke

n
fr

om
 R

ef
.

49
.

(a
)

T
he

 p
ro

bl
em

.
(b

)
T

he
 t

op
 o

f
th

e
de

fi
ni

tio
n

(a
ut

om
at

ic
al

ly

an
al

yz
ed

by

U

SE
.I

T
).

In

vo
ca

tio
n

on
ly

 c
on

tr
ol

m

ap
 a

nd

co
m

pl
et

e
co

nt
ro

l
m

ap
.

(c
)

E
xc

er
pt

s
of

 F
O

R
T

R
A

N

co
de

 (
au

to
m

at
ic

al
ly

pr

od
uc

ed

by
 U

SE
.I

T
).

Figure 15 (c~~fj~~e~) (d) Some results of execution.

(d)

Functional Life Cycle Automation: USE.IT 55

fer be considered necessary. We have found that such
an exercise can be useful for verification and validation
purposes even when a specification has been imple-
mented within a particular machine environment. In
this case, several errors can be detected that could be
fixed both in the original specification and in its result-
ing code.

There are several “incremental” methods for start-
ing over with USE.IT. These are applicable to situa-
tions where system developers want to start a target
system’s development from scratch but where there are
reasons, political or otherwise, for holding on to an ex-
isting tool, such as a language, to use with the func-
tional model. In most cases the easiest and most cost
effective method is to use the pure functional model

without attempting to complicate it. To “start from
scratch” means bringing in others to help develop the
system or training existing developers. This initial in-
vestment is minor within the overall context of devel-
oping a system. A summary follows of the various al-
ternatives, starting with the pure functional one (Fig.
16).

Functional method syntax and semantics ap-
proach: [Fig. 16(a)] the most direct since it corre-
sponds directly to the functional life cycle model. In this
case the developers use both the syntax and semantic
rules of the functional approach [371.

Figure 16. Methods for starting over.

r-1 t 1 I I I I l----l

/ f?k'," 1 4 HOM / 1 AXES / ,j ANALYER } ,j RAT }

1 I I I I I I 1 I 1

A 8 C D E

(a) FUNCTIONAL METHOD OF SYNTAX AND SEMANTICS

(b) A FRONT-END TO THE FRONT-END

(c) "X" SYNTAX FUNCTIONAL METHOD SEMANTICS

(d) PROVIDE "X" SYNTAX WITH FUNCTIONAL SEMANTICS

AXES
MECHANISMS
RESTRICTED
TO "X"
SYNTAX

(e) PROVIDE "X" SYNTAX WITH FUNCTIONAL METHOD SYNTAX AND SEMANTICS

AXES
Xl,...X"

(f) EVOLVING INTEGRATION OF SYNTACTICAL METHODS

56 M. Hamilton and S. Zeldin

A front-end to the front-end approach: [Fig. 16(b)]
the target system is defined with the new syntax and
semantics rules of the functional approach. The com-
pleted definition is then translated to a definition, which
still follows the functional rules, but it is described in
terms of a more familiar syntax, so that the developers
may still “talk” or “think” in the same “language,”
syntactically [501.

In this case there is the initial investment of building
a translator, and it is necessary to have the definition
(and changes to it) provided by those who are familiar
with the syntax of the functional method. A potential
shortcoming is that the actual physical process of defin-
ing a system gives a familiarity not acquired by learn-
ing one already provided. Thus the “developers” as op
posed to the front-end “definers,” in this case, might
start with an unnecessary hardship. This approach,
however, could appear to the developers to have less of
a transient then that initially provided by the “cold tur-
key” approach.

“x” syntax, funct~o~l rnet~~ semantics up
preach: [Fig. 16(c)] the developer is still able to use
the syntax he is most familiar with, but he must follow
the rules with the use of this “x” syntax. There is more
than one way of accomplishing this [39]. With the Di-
rect Method, the developer learns the rules and is
taught to write system definitions using similar syntax;
but he must follow the rules provided to him for use
with that syntax. With the Indirect Method, the devel-
oper uses the same syntax and he does not necessarily
follow the functional semantic rules (just like he always
has before), Once the definition has been ~mpleted or
while he is in the process of defining the system, a user
friendly module assists him by asking him enough ques-
tions for him to provide answers, thus forcing the defi-
nition to follow the same rules as those followed in the
direct method. Once the definition is determined to be
a good one by the decision support system, the defini-
tion is converted to the syntax of the functional method.

Provide “x” syntax with functional semantics ap-
proach: [Fig. 16(d)] defines a compiler for the “X”
syntax defined with the functional method and replaces
the old compiler [5 11. There is training here in that the
functional compiler will provide a new set of meanings
to the “X language”.

Provide “X” syntax with functional method syntax
and semantics approach: [Fig. 16(e)] the “x” syntax
is maintained by forcing the “new” mechanisms defined
with the functional method syntax and semantics to be

as familiar as possible by corresponding them to the
“x” language. This method, however, is being short
changed, if newer, more abstract mechanisms are not
also constructed. These new mechanisms add new syn-
tax to the “language”.

Evolving integration of syntactical rnet~~s ap-
proach: [Fig. 16(f)] the developers could choose to
speak in the language desired (i.e., the old or the new).
An algorithm would then be constructed to combine the
functional syntax with the “x” syntax(es).

RESULTS

It is no coincidence that the HOS life cycle model is a
functional one. The process of determining properties
necessary for a functional model has been an interactive
one with that of defining the HOS model. This process
has not taken place overnight. It began when we were
involved in all aspects of development of a very complex
and large-scale real-time avionics system. At the time
we were only interested in which things we should do
differently for the next applications or in which things
we should keep on doing since we could not find any
reason to want to change them. The first analysis led to
a beginning towards understanding generic properties
of a system [l] and later towards understanding the ge-
neric properties of a system for the development of a
system [271.

We began by attempting to unde~tand the proper-
ties of our own software system and its development.
We extended this analysis to one of understanding a
larger system within which the software resided. The
result was a theory for defining systems. At this time
we had only a set of definitions and axioms with which
to define systems. A definitional process was time con-
suming since each definitional step required theorem
proving exercises. Although we were successful in the
application of the theory, in that it worked in providing
unambiguous definitions, we found that using these for-
mal methods, directly, to define each level of a hierar-
chical definition was a very user unfriendly approach to
take-in fact, so unfriendly that we were the only ones
to use the theory for some time.To remedy this situa-
tion, we attempted to ~mmunicate, more effectively,
the procedures that we went through to others. To do
so required a next step of analysis. It did not take long
to realize that as we defined systems, certain common
patterns would occur over and over again. Each of these
patterns, a proof in itself, was then adopted for future
systems as a standard for definition. The first mecha-
nisms to evolve were the primitive mechanisms (primi-
tive structures, functions, and data types) for defining

Functional Life Cycle Automation: USE.IT 57

a system [1,2]. Another result was the demonstrated
ability to integrate these mechanisms which consisted
of both generation and behavior types of definitions
(i.e., structures and functions with data types). We then
proceeded to build more abstract mechanisms in terms
of the primitive ones. With these mechanisms we had a
more effective means of conveying to others how one
goes about defining an HOS-based system [11. We
found, however, that our procedures were still not user
friendly enough for most system designers and that
there was only a handful of us who proceeded to use
our theory in its early stages. We discovered, however,
at this early time that the properties of these systems
were very different than those of conventionally defined
systems. In particular they served as a unique vehicle
for automation. We also knew that few would benefit
from them if we could not convey these properties even
more effectively to others. It was at this time that we
decided to accelerate the automation of the methodol-
ogy, both as an end in itself, and as a means of convey-
ing to others what was possible with the theory. First
we defined a conceptual life cycle model for the Army
[29] and a requirements definition language for the
Navy [33]. For the Army we defined the practical as-
pects of our theory for a new life cycle approach. For
the Navy we attempted to make possible the use of that
approach for a large class of users by developing the
language AXES.

Aside from a stepup in user friendliness, the key con-
siderations which were introduced at the time we de-
fined AXES were those of variable syntax, extensibility
for all types of mechanisms, abstraction, ability to in-
tegrate data types, structures and functions at any level
of abstraction, and the ability to define all mechanisms
in terms of the HOS primitives.

Once the AXES component was developed, there were
numerous experiences in applying the HOS theory as a
definitional method. Earlier efforts were without auto-
mated aids (see discussion of some of these efforts in
[2,27]). Some of these experiences were with software,
only, systems, some were systems of which software was
a part, and some were systems without software. Others
were systems for developing systems. In these earlier
efforts HOS was used only as a means to define systems
in such a way as to be free of ambiguities. Not only did
this provide a way of helping one user to convey the
meaning of his part of a system to another user, but it
also helped a user understand the meaning of his own
part of the system, especially in terms of the larger part
within which it resided.

We suspected that unambiguous requirements
would make the developer’s life a lot easier; this in turn
would make the user’s life a lot easier. Our suspicions

proved out when our staff defined a radar system in
AXES and turned it over to a different organization to
develop the system [35]. On this project, we demon-
strated, and verified more completely than before, that
programming, indeed, could be almost a one-for-one
process from requirements if requirements were defined
in an unambiguous state.

The first tool to be automated was the Analyzer. The
second tool to be automated was the RAT. The advent
of its automation completed the automation of the life
cycle model, USE.IT, for its first complete configura-
tion. The RAT (together with AXES and the Analyzer)
has now been demonstrated within large system
applications.

Our first application demonstration of a complete
USEIT configuration, in its prototype state, and out-
side our own organization, was in the manufacturing
environment. Here we demonstrated the feasibility of
an automated life cycle concept to a system which con-
sisted of an interactive human operator within a deci-
sion support environment of hardware and software
subsystems [381.

Another application, the ASAS system, consisted of
a demonstration of a module which was a part of a bat-
tlefield intelligence system environment [371. Our staff
defined a set of requirements taken from existing doc-
umentation. This documentation consisted of a mixture
of English, equations, and SREM. The requirements
defined a module which would result in approximately
10,000 lines of code if they were resource allocated to
all software. A major part of this module was defined
with AXES and analyzed with the Analyzer, removing
all inconsistencies in this part of the requirements. For
demonstration purposes, several hundred lines of FOR-
TRAN code were produced automatically, and executed
from software portions of the system requirements.

Several organizations, other than our own cus-
tomers, for whom we performed experiments or devel-
oped prototypes have had some experience with the
AXES and the Analyzer components. We are at this time
actively in the process of installing complete configu-
rations of USEIT, which have in addition, the RAT, in
the government, university, and commercial environ-
ments. Although at this early date we can not report
any extensive statistics in the use of USE.IT by anyone
other than ourselves, we have had some preliminary ex-
periences with customers, to date, which we believe
would be of interest in that they do, we believe, give a
hint as to the ramifications of the use of an automated
functional life cycle model for future applications, par-
ticularly the large and complex ones.

One commercial organization, for example, in the
communications environment gave us user’s require-

58 M. Hamilton and S. Zeldin

ments for what we will call a real-time CLOCK prob
lem. Our staff defined the user’s requirements in AXES

and developed it with USE.IT as the user observed the
process. The results of this problem are documented in

1521.
A member of another organization decided to take

this same problem and write the program for it in order
that he could compare USE.IT’s productivity to his
own. The resources used by our staff were 4 man hours
to define the problem. USE.IT was used to “develop”
it. The resources used by the manual method to develop
it were 3 man days where the programmer claims to be
a 5000-lines-a-month programmer.

A third organization gave our staff a nontrivial real-
time asynchronous communicating concurrent process-
ing radar system problem. The results of this problem
are documented in [49]. Some of the results of the life
cycle process of this problem are illustrated in Figure
15. Our staff spent a total of 24 man-hours to define the
problem. USE.IT was used to “develop” it, resulting in
800-1000 lines of FORTRAN code, varying with changes
as requested by the user. If we compare the time with
USE.IT to an average programmer’s time (by DOD

standards) such a programmer would have spent 80
man-days for just the implementation part of this
example.

Still another organization gave us a problem related
to manufacturing of buildings. Our staff defined and
developed this application in 11 man days. It resulted
in approximately 10,000 lines of FORTRAN code [53].
Our customer estimated that by conventional standards
it would have taken them approximately two years to
do the same job. Other more recent experiences have
been documented such as [54,55].

It became apparent that some organizations and ap-
plications would not be able to take advantage of
USE.IT unless there was an effective means to hook up
the front end of their environments to the front end of
USE.IT and the back end of their environments to the
back end of USE.IT. Our initial attempts with the front
end were with PSLIPSA, SREM, and IDEF. Here we were
able to show that users could “speak their own lan-
guage”, but yet gain the rigor that is required for un-
ambiguous communication and thus the automatic pro-
gramming of USE.IT. Our initial attempts with the
back end involved a research version of the RAT which
automatically programs in APL, PASCAL, and LISP. They
were followed by the production version of the RAT

which now automatically programs in FORTRAN and
PASCAL. Other more commercially oriented organiza-
tions who are involved with very large data bases are
often dependent upon existing data bases as well as
with data base handling mechanisms. We are now in
the process of working with these types of organizations

by helping them to “plug in” to USE.IT. This involves
the interfacing of USE.IT defined systems with data
base management systems as external operations in the
USE.IT system. Methods for defining a data base with
USE.IT are discussed in [561.

We have also worked with intermediate stages of de-
velopment by attempting to put the rigor of AXES into
higher order languages. For, example partial semantics
of ADA was defined in terms of AXES [561. This sets the
stage for an ADA RAT as well.

The HOS model has been applied to several different
types of systems at various levels of its own life cycle
model development. Not only did these experiences
help us to understand properties of systems, including
systems of developing systems, users who develop sys-
tems, and tools for developing systems, they also helped
us to enhance the methods that were being used to un-
derstand these properties.

The next step is to apply USE.IT to a system which
is comparable in magnitude and complexity to the ones
from which it was “derived” [11. For it is here that we
believe its true virtues will be made known.

PRODUCTIVITY AND USE.IT

It is now not unusual in today’s computerized society to
spend millions of dollars for a single software project.
One recent interview with a relatively small insurance
company has indicated present expenditures of 40 mil-
lion dollars per year on software development. Further,
this company is discovering that the projected number
of software programmers required to fulfill their needs
in the near future is just not available.

Initial cost savings with USE.IT can be attributed to
automatic detection of a large class of errors, to auto
matic programming and to a design technique that ac-
celerates the design process.

Table 8, a typical breakdown of classical life cycle

Table 8. Classical Life Cycle Costs (derived from [57])

Phase Activity

Design Analysis Total

Initial Development 10 15 25%
Requirements & Design (R + D) 5 5 10
Programming (P) _ 5 a 5
Verification + Validation 0’ + V) ’ 10 10

Maintenance 21 48 75%
Residual errors 1.5 7.5
R+D 13.5 13.5 27
P 13.5 0 13.5
v+v U 27 27

Total develooment 37 63 100

‘Analysis cost data for programming phase and design cost data for V + V

phase included in analysis cost data for V + V phase (assumption based on

available data).

Functional Life Cycle Automation: USE.IT 59

costs for a large software project, was derived data from

[571.
This particular set of classical statistics [57] sepa-

rates the software life cycle into four phases where the
requirements and design, programming, and verifica-
tion and validation phases are associated with initial de-
velopment and maintenance begins when the system is
“operational”. Each phase has associated with it two
activities: design and analysis. Costs are associated with
each of these two activities for each phase. (Note that
activities within a phase and the phases themselves
sometimes overlap, a problem often encountered in
classical life cycle models.) With respect to mainte-
nance costs, we make the assumption here that main-
tenance is a reiteration of the initial development pro-
cess in addition to fixing residual errors.

Consider, now, the impact of USE.IT with respect
to Table 8 (like life cycle costs).

With the USE.IT tool, the design activity of the pro-
gramming phase, which accounts for 18.5% of software
costs, would be done automatically. In addition, where
the analysis activity of all phases of present software
projects accounts for approximately 63% of software
costs, the USEIT tool would automatically perform
75% of that function. Finally, we must not overlook that
most of the time the user, or customer, of software
products does not get what is really needed, because
with traditional methods there is no way to communi-
cate those needs adequately between the user and de-
veloper. This part of the development process, referred
to as the design activity during the Requirements and
Design phase, accounts for another 18.5% of software
expenditures. With USEIT, unambiguous definition
and rapid prototyping are part of the process, resulting
in an estimated minimum savings of 50%, while ensur-
ing the customer gets what is wanted.

One isolated example, with an insurance company,
of USE.IT cost savings estimates is presented as a sim-
plified summary in Table 9. Assuming these estimates,
should the insurance company change over to func-

Table 9. Estimated Life Cycle Cost Savings With
USE.IT

R + D design @
18.5%

Programming Design
@ 18.5%

Analysis (all phases)
@ 63%

Total costs

Historical costs

$ 7,400,000

7,400,000

25,200,000

$40,000,000

Costs with USE.IT

s 3,700,000

0

6,300,OOO

$10,000,000

Ykse example of annual savings to a small insurance company with present
annual software development costs of 40 million dollars.

tional techniques? According to Table 10, the most dif-
ficult decision point would occur when the insurance
company has just reached the 30 million dollars expen-
diture point.

Last, but not least, USE.IT provides a means to
achieve “reuseable” software. New software projects
today have no means to use parts of old systems to build
new ones because the old parts are embedded in the old
system so as to depend on other parts. Because cost im-
plications of “reuseable” software to the development
of new systems has not been exploited to date, a mini-
mum cost savings of 75% can be projected over a pro-
ject life cycle. Recent small samplings of actual
USE.IT applications (see Results) have shown greater
productivity then estimated above (Table 11).

SUMMARY

The theory exists. The technique for using it exists. Its
automation exists. The AXES library will continue to
evolve. We are currently concentrating on providing ed-
ucation for developers and future developers which fo
cuses on a different way of thinking about systems. A
major step in this direction has also been taken by Mar-
tin in his forthcoming book [58].

A most influential rationale to use the functional life
cycle model, to organizations, is that which has to do
with cost savings. Careful analysis should be performed
in the area of cost savings in order to fully realize its
impact. There are a lot of claims being bandied about
in the area of productivity today, especially since pro-
ductivity is such a popular subject. It is important to
make sure that statistics are being used as they should
be-with care. If for example, a development of a sys-
tem can be accomplishedwith a new method in iti of the
time it would have been developed with an older
method, one gains by being able to accomplish the job
with 90% savings. This, however, is an increase in pro-
ductivity in 1000%. If, however, one takes a slice of the
development process and compares the time of an au-
tomated tool which takes, say, 1 minute to produce
source code to 1 year of a programmer’s time, the in-
crease in productivity could be viewed as 525,600%!

With the historical life cycle model, there is both ob-
solescence in the tools and techniques that are being
used to develop systems and in the algorithms that are
being developed with, or because of, these tools and
techniques. How many times have design techniques
been used in particular applications only because one
was forced into them before and they are now ingrained
habits? Is it really necessary, for example, in the soft-
ware engineering field to design data base management
systems, operating systems, or avionics systems as they
are designed today? Many areas of research or follow-

T
ab

le
 1

0.
 T

ra
de

of
fs

fo

r
S

ta
rt

in
g

O
ve

r
w

it
h

U
S

E
.I

T

20
0

CO
ST

S
TO

DA

TE

(S
MI

LL
I~

NS
)
=

15
0

-I

10
0

_

50

_I

40
 30

20

1
0

20

40

Es
ti

ma
te

d T
ot

al
 L
if

e
Cy

cl
e
Co

st
 (
$M

il
li

on
s)

 80

12
0

90

i0

- -

J
O

15
0

Co
st

 o
f
st

ar
ti

ng
 fr

om
 s
cr

at
ch

 wi
th

US
E.

IT

Ll

Sa
vi

ng
s
on

 p
ro

je
ct

 st
ar

ti
ng

 fr
om

sc
ra

tc
h w

it
h
US

E.
IT

L-
,

Po
in

t
of

 n
o
re

tu
rn

 (
pr

oj
ec

t t
oo

ad
va

nc
ed

 fo
r
an

y
po

ss
ib

le
 sa
vi

ng
s)

Fo
r
pr

oj
ec

ts
 un
de

rw
ay

, s
av

in
gs

 =
po

in
t

of
 n
o
re

tu
rn

 l
es

s
co

st
s
to

 d
at

e.

Functional Life Cycle Automation: USE.IT 61

Table 11. Actual Life Cycle Cost Savings with USE.IT

Life cycle manpower

9.

Example 1 Example 2 Example 3 Example 4 10.

E. Yourdon and L. Constantine, Structured Design:
Fundamentals of a Discipline of Computer Program and
Systems Design, Yourdon Press, New York, 1978.
R. A. Snowdon, An Experience-Based Assessment of
Development Systems, in Software Development Tools
(W. E. Riddle and R. E. Fairley, eds.), Springer, Hei-
delberg, 1980, pp. 64-75.
J. Martin, Application Development Without Program-
mers, Prentice Hall, Englewood, NJ, 1982.
FOCUS, Information Builders, Inc.
Nomad, National CSS, Inc., Wilton, CT.
Ramis II, Mathematics, Inc., Princeton Junction, NY.
Application Development Facility, IBM, Armonk, NY
J. E. Stay, Denotational Semantics: The Scott-Strachey
Approach to Programming Language Theory, MIT
Press, Cambridge, MA, 1977.
J. de Bakker, Mathematical Theory of Program Cor-
rectness, Prentice-Hall, Englewood Cliffs, NJ, 1980.
W. E. Howden, DISSECT-A Symbolic Evaluation
and Program Testing System, in Tutorial: Automated
Tools for Software Engineering, IEEE Catalog Number
EHO 150-3, Library of Congress Catalog Number 79-
91320, IEEE Computer Society, NY, 1979, pp. 207-
210.

With USE.IT
Without

USE.IT
Productivity

increase
Cost savings

4 hr” 3 days” 2 days” 11 days”

24 hr” 80 days’ 60 daysb 1,000 days”

600% 2.700% 3.000% 9,091%
83% 96% 96% 99%

“AClUd.

bEstimate using DOD standard of 10 lines of code produced by an average

programmer per day.

on to research relating to the historical model are pur-
sued that may themselves not be necessary. Is extensive
work in areas such as special techniques for each of the
areas of concurrent processing, asynchronous process-
ing, proof of correctness, or theorem proving necessary?
Or should there be a different focus in each of these
areas than there is today? We suspect that, given a
clean slate as a basic foundation, that one of the first
areas of research should be to find out where such ob
solescence truly exists. Such obsolescence, however,
cannot be found unless those who look for it know what
they are looking for.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

M. Hamilton and S. Zeldin, Higher Order Software-
A Methodology for Defining Software, IEEE Trans.
SE-2, (1976).
M. Hamilton and S. Zeldin, The Relationship Between
Design and Verification, J. Systems Software 1, 29-56
(1979).
D. Ross, Structured Analysis (SA): A Language for
Communicating Ideas, IEEE Trans. Software Engineer-
ing SE-3, 16-34 (1977).
D. Teichroew and E. A. Hershey III, PSL/PSA: A
Computer-Aided Technique for Structured Documen-
tation and Analysis of Information Processing Systems,
IEEE Trans. Software Engineering SE-3, 16-34 (1977).
C. G. Davis and C. R. Vick, The Software Development
System, Proc. 2nd International Conference on Software
Engineering, October 1976, Addendum pp. 27-43.
J. D. Warnier, Logical Construction on Programs, Van
Nostrand Reinhold Company, New York, 1974.
L. Robinson et al., Proof Techniques for Hierarchically
Structured Programs, Comm. ACM, 20, 271-283
(1977).
D. L. Parnas, On the Criteria to be Used in Decompos-
ing Systems into Modules, in Tutorial on Software De-
sign Techniques Second Edition, edited by Peter Free-
man and Anthony I. Wasserman, IEEE Computer
Society, IEEE Catalogue Number 76CHll45-2C,
1977, pp. 131-136.

11.

12.
13.
14.
15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

J. C. King, Symbolic Execution and Programming Test-
ing, Commun. Ass. Comput. Mach. 19, 385-394,
(1976).
L. A. Clarke, A System To Generate Test Data and
Symbolically Execute Programs, in Tutorial: Auto-
mated Tools for Software Engineering, IEEE Catalog
Number EHO 150-3, Library of Congress Catalog
Number 79-91320, IEEE Computer Society, NY, 1979,
pp. 21 l-218.
D. J. Reiffer and R. L. Ettenger, Test Tools: Are They
a Cure-All?, TR-0075(5112)-5, The Aerospace Corpo-
ration of America, El Segundo, CA, 1974.
E. F. Miller, Methodology for Comprehensive Software
Testing, AD-A 013 11, Available from NTIS, (1975).
L. Druffel, “The Need for a Programming Discipline to
Support the ADA* Programming Support Environ-
ment,” IFIP Working Conference on Automated Tools
for Information System Design and Development,
(1982).
Attendees of SIGSOFT First Software Engineering
Symposium on Tool and Methodology Evaluation, “Pro-
posals for Tool and Methodology Evaluation Experi-
ments,” Software Engineering Notes, ACM, (1982).
B. Boehm, Software Engineering Economics, Prentice-
Hall, Englewood Cliffs, NJ, 1981.
M. Hamilton and S. Zeldin, Properties of User Require-
ments, in Formal Models and Practical Tools for Infor-
mation Systems Design (H. J. Schneider, ed.), North
Holland, Amsterdam, 1979.
M. Hamilton and S. Zeldin, “Requirements Definition
within Acquisition and Its Relationship to Post-Deploy-
ment Software Support (PDSS),” TR-22, Higher Order
Software, Inc., Cambridge, MA (1979).
M. Hamilton and S. Zeldin, “A Functional Approach to
the Life Cycle Model: Towards a Development Support

62 M. Hamilton and S. Zeldin

System for DOT,” Technical Report No. 31 prepared
for SDC Integrated Services, Higher Order Software,
Inc., Cambridge, MA (1981).

29. M. Hamilton and S. Zeldin, *‘Integrated Software De-
velopment System/Higher Order Software Conceptual
Description,” Higher Order Software, Inc., Cambridge,
MA (1976).

30. M. Hamilton and S. Zeldin, “The Manager as an Ab-
stract Systems Engineer,” Digest of Papers, Fail
COMPCON 77, Washington, DC, IEEE Computer So-
ciety Cat. No. 77CH1258-3C (1977).

3 I. W. Schatz, “Rebel With a Cause,” Datamation, (198 1).
32. M. Hamilton and S. Zeldin, “The Foundations of AXES:

A Specification Language Based on Completeness of
Control,” DOG. R-964, Charles Stark Draper Labora-
tory, Inc., Cambridge, MA (1976).

33. M. Hamilton and S. Zeldin, “AXES Syntax Description,”
TR-4, Higher Order Software, Inc., Cambridge, MA
(1976).

34. Higher Order Software, Inc., “The Appli~tion of HOS
to PLRS,” TR-12, Cambridge, MA (1977).

35. R. Hackler, An AXES Specification of a Radar Schedu-
ler, Proceedings, Fourteenth Hawaii Inter~tionai Con-
ference on System Sciences 1 (198 1).

36. A. Razdow, Introduction to the Application of HOS to
Hardware Design: The CORDIC Algorithm, Proceedings,
Institute for Defense Analyses, Summer Study on Hard-
ware description enrages, National Academy of Sci-
ences, Woods Hole Study Center, Woods Hole, MA
(1981).

37. R. Hackler, “An HOS View of ASAS,” Technical Re-
port No. 32, Higher Order Software, Inc. (198 1).

38. “Integrated Decision Support System (IDSS) Func-
tional Requirements and Preliminary Design,” Techni-
ca1 Report No. 30 prepared for the U.S. Air Force Ma-
terials Laboratory, W~ght-Patterson Air Force Base,
Higher Order Software, Inc., (1981).

39. Higher Order Software, Inc. “Computable IDEF: A
Major Step Towards Increasing Productivity,” Cam-
bridge, MA (1981).

40. M. Hamilton and S. Zeldin, ‘stop-dow~/bottom-up,
Structured Programming and Program Structuring,”
Charles Stark Draper Laboratory, Cambridge, MA,
Rev. 1, DOG. E-2728 (I 972).

41. J. Rood, T. To., and D. Harel, A Universal Flowcharter,
Proceedings of the NASA/AIAA Workshop on Tools
for Embedded Computer Systems Software, Hampton,
Virginia, November 7-8, 1978, pp. 41-44.

42. J. Rosenbaum and C. Early, “FAME: Front-End Anal-
ysis and Modeling Environment,” Proceedings, NBS/
IE~~/ACM Software Tool Fair sponsored by the Na-
tional Bureau of Standards, San Diego, CA (1981).

43. R. Hackler and A. Razdow, Analyzer project, Higher
Order Software, Inc., Cambridge, MA (1981).

44. A. Razdow and R. Hackler, APL RAT project, Higher
Order Software, Inc., Cambridge, MA (1981).

45. B. Boehm, Keeping a Lid on Software Costs, Compu-
terworld (1982).

46. W. Heath, A Higher Order Machine (HUM) for Higher
Order Software (HOS) in “Techniques for Operating
System Machines,” TR-7, Higher Order Software, Inc.,
Cambridge, MA (1977).

47. M. Hamilton, “The ADA Environment As A System,”
Pr~eedings of the ADA Environment Workshop, spon-
sored by DOD High Order Language Working Group,
Harbor Island, San Diego, California, (1976).

48. Prepared by R. Hackler, HOS, Inc. (1982).
49. R. Hackler, A. Razdow, and B. Wright, “An Example

of Asynchronous and Concurrent Communication with
USE.IT: A Missile Acquisition System,” Educational
Series No. 10, Higher Order Software, Inc. (1982).

50. J. Rosenbaum, FAME interface to PSL/PSA project,
Higher Order Software, Inc. (1980).

51. R. Smaby, “Specifying ADA Semantics in HOS,” TR-
34, Higher Order Software, Inc., Cambridge, MA
(1982).

52. Higher Order Software, Inc., “Annotated Model of a
Digital Clock,” Educational Series No. 1, Cambridge,
MA (1982).

53. Higher Order Software, Inc., “USE.IT for Building
Buildings,” Educational Series No. 2, Cambridge, MA
(1982).

54. A. Razdow and 6. Goates, “Using AXES as a Hardware
Description Language,” Educational Series No. 8,
Higher Order Software, Inc., Cambridge, MA (1982).

55. R. Hackler, “An HOS Simulation of a TCAC-Like Sys-
tem,” Educational Series No. 9, Higher Order Soft-
ware, Inc., Cambridge, MA (1982).

56. R. Hackler and R. Smaby, “Information Modeling in
HOS,” Higher Order Software, Inc. Educational Series
No. 11, Cambridge, MA (1982).

57. D. K. Lloyd and M. Lipow, Reliability: Management
methods and Mathematics, Prenti~-Hall, Englewood
Cliffs, NJ, 1962,

58. J. Martin, Program Design Which is Provably Correct,
Savant Research Studies, England, 1982.

