The Relationship Between Design and Verification

M. Hamilton and S. Zeldin

Higher Order Software, Inc., Cambridge, Massachusetts

The assumption is made here that a design process, in
order to be effective, must include techniques that
facilitate the effectiveness of the verification of the
target design resulting from that process. The assump-
tion is also made that these technigues can and should
be universal in nature. That is, any system designer
should be able to use these techniques to benefit his or
her own design process and to check for the proper
use of these techniques, both statically and automati-
cally, with the aid of a common set of tools.

Once a set of universal techniques has been verified,
there is no longer a need to verify such techniques each
time a new system is designed. i follows, then, that
there is no longer a need to verify or prevent those
categories of problems that are known to exist no
longer, given the correct use of those system design
technigues that eliminates that class of problems.

Verification of a system design includes the identifi-
cation of redundancies, logical incompleteness, and in-
consistencies of a system definition, description, imple-
mentation, and execution. If a system design process
inherently produces a design that no longer requires
certain types of “after the fact” verification, many as-
pects previously associated with the verification process
can be eliminated. We discuss our recent experiences
in defining systems where we have attempted to show
the relationship between design and verification. An ex-
ample specification is used to demonstrate the proper-
ties of a system definition whose design supports elim-
ination of unnecessary verification, maximum use of
static verification, and minimum use of dynamic
verification.

INTRODUCTION

A system development process is a system that de-
velops another system. Such a system can be viewed
as a process where each instance is continuously

Address correspondence to M. Hamilton, President, or S. Zel-
din, Vice-President, Higher Order Software, Inc., 806 Massachu-
setrs Aveniee, Cambridge, Massachusetts 02139,

The Journat of Systems and Software 1. 29-56 (1979)
0y Elsevier North Hollund. Inc., 1979

receiving requirements as inputs and producing spec-
ifications as outputs. In such a development system,
requirements are those items that are desired or
needed and specifications are the results that realize
those requirements; one engineer’'s requirements
could be another engineer’s specifications |1].

There are several disciplines, or combinations
thereof, that can occur as a development process.
These disciplines include design, implementation,
verification, management, and documentation. All of
these disciplines also take place throughout a system
development process and. depending on point of
view, one engineer’s design process could be viewed
as another engineer’s management, implementation.
verification, or documentation process. Each of
these disciplines is just as interchangeable with re-
spect to each other, depending entirely on a given
point of view.

A development process is viewed as a management
process when it is considered with respect to its
control of other disciplines.

A development process is viewed as a documentad-
tion process when it is considered with respect to
its description of other disciplines.

A development process is viewed as a design pro-
cess when it is considered with respect to its
definition of other disciplines.

A development process is viewed as o resource allo-
cation process if it is considered in terms of its
implementation of other disciplines.

A development process is viewed as a verification
process if it is viewed in terms of its execution of
other disciplines.

A successful execution of a target system is directly
dependent on a successful execution of a develop-
ment process.

The design process is a focal point for all of the
other disciplines. Not only does it determine if o

29

U164 1212:79010029-28 $02.25

30

system is going to work, but it also directly affects
the effectiveness of the other disciplines. A design
process, however, is not complete until the process
itself or its results have been verified. It follows then
that the verification process is a focal point for all the
other disciplines as well.

For each step of design, there should be a ‘‘coun-
terstep’” of verification. This does not mean that for
every new thought in the design process it is neces-
sary to have a one-to-one corresponding ‘‘thought-
back’ for the entire verification process; quite the
contrary—not only would such a method be time
consuming, but it would also not be reliable. At
times, in fact, the process of design could be inter-
preted as one and the same as the process of verifica-
tion. This occurs when certain design characteristics
are included for the purpose of preventing unneces-
sary verification. In such a case, some types of verifi-
cation requirement are designed out of the system.
What is left is the second-order verification that guar-
antees that unnecessary verification requirements
with respect to design have been eliminated, and then
a need to verify only that which is truly part of the
original intent of the design.

Many engineers desire to improve their own design
techniques. These design techniques include tech-
niques for producing the design for a solution to a par-
ticular problem as well as the design for the process
that will verify that solution. More often than not,
these engineers appear to be talking about a different
design process since they are involved in different
types of systems or different phases of development
within a given system. Actually, they are applying the
same process (i.e., design) in different ways. In the
context of a typical system development process, de-
sign could be the process of developing concepts, re-
quirements, specifications, code, or computers; like-
wise, design could be the process of going from a
concept to a set of requirements, from requirements
to a set of specifications, from specifications to a set
of code, or from code to a set of computers. In each
of these processes, a designer considers the task of
preparing a design to reside eventually in a ‘‘ma-
chine’’ environment (e.g., a computer for a software
system). One of the problems in a design approach is
that the designer either worries unnecessarily about
design considerations irrelevant to his own process or
bypasses certain design considerations under the
impression that they have already been, or will later
be, handled by someone else.

A designer should be concerned with the design
that is to reside in that designer’s development phase,
and that design only. Each designer goes through the
same generic process but should be applying that pro-

M. Hamilton and S. Zeldin

cess to a different phase of the overall application.
Thus the inputs and outputs of that design process
should be both unique and self-contained.

Other than a good deal of insight, a successful de-
signer has necessary and sufficient knowledge about
a particular problem, an understanding of the nature
of a design process, an understanding of the nature of
the reverse of a design process (the verification pro-
cess), and a means to perform a set of effective
implementations.

The verification process exists for the purpose of
finding errors in the output of a design process. There
are those errors that can always be found by auto-
mated means (provided that the design process in-
corporates proper procedures) and those that cannot
always be found by automated means. We divide the
former into two kinds. The first is determined by ana-
lyzing a system (or a set of subsystems) on a stand-
alone basis. For example, if a specification has an in-
consistency among its functions or if a computer pro-
gram has a data conflict, such errors can be found by
analyzing only the system in question. In this case, it
is possible to design the system in such a way that
checks can be made with respect to interface cor-
rectness (i.e., logical completeness, consistency, and
nonredundancy). The second kind is that which is
determined by checking one development layer with
the development layer from which it evolved. An ex-
ample of such a comparison is that of checking a com-
puter program against its specification. Again, checks
can be made with respect to interface correctness be-
tween layers.

Errors that cannot always be found by automated
means are those that are determined by checking a
development layer against the intent of the original
designer. A small percent of large-system develop-
ment errors fall into this category [2]. This problem
is alleviated by providing both techniques that auto-
matically eliminate other sources of errors and those
that support the verification engineer in finding the
remaining errors.

An ordering for a verification process then be-
comes apparent. One first concentrates on eliminat-
ing certain types of verification by following design
principles that make this possible. This is the con-
ceptual phase of the verification process. Then one
concentrates on using these principles correctly. A
check for correct use of principles can be performed
both statically and automatically. This is the sratic
phase of the verification process. Finally, one con-
centrates on verifying only that part of the design
which is concerned solely with the performance of a
particular algorithm. This is the dynamic phase of
the verification process.

Relationship Between Design and Verification

THE RATIONALE FOR USING A METHODOLOGY

An effective methodology can assist a designer with
respect to both the design itself and its verification.
There are concerns, however, on the part of some
project managers with regard to introducing a new
methodology into an organization especially when it
affects an ongoing project. Often, unfortunately,
methods are never improved because of insufficient
time to introduce new methods when, in fact, part of
the reason for not having enough time is the methods
already being used.

How does one convince project managers of the
benefits of introducing a methodology into their orga-
nization (excluding success stories about competi-
tors)? Project managers, whose first priority is to
deliver items that work, and work on time, are in the
majority and must have some proof that the introduc-
tion of a methodology will serve their needs better.
We have found that an effective way to demonstrate
a methodology within a given project is to select a
module within that project’s environment and to
show the differences in definition of that module
using the new methodoiogy as opposed to the meth-
ods already being used on that particular project. In-
variably, the most significant results are those where
the use of certain design techniques eliminates some
traditional categories of errors. The power of new
concepts is often realized when those errors are un-
covered in anengineer’s own system, especially when
that module is thought to be already working!

Once a project manager sees that some method-
ology can be more effective than none (i.e., no com-
mon adopted methodology). an interest develops with
respect to other methodologies. Which one is best?
How do we choose between one and another? It then
becomes apparent that there should be a common set
of criteria by which to compare methodologies.

Some project managers are much harder to con-
vince than others, with respect to using an effective
methodology, because they are fortunate enough to
have all “*smart™” people. It is true that the smartest
person, by definition, would apply an effective meth-
odology. An effective methodology, however, ap-
plied in common by several smart people, would far
exceed the advantages of each smart person applying
techniques in an ad hoc manner, since all the intri-
cacies of a complex system are by nature beyond the
grasp of any human being. The designs of all smart
people must still be integrated. Thus a manager can
be much more effective by defining a standard means
to integrate the methods of these people before the
fact rather than after.

Once a project manager decides to adopt a certain

31

methodology, the immediate problem becomes how
to implement it without impacting deliverable items
of an ongoing project. In this case, a project manager
can be assisted in using those aspects of the meth-
odology that either make results more visible, find or
prevent errors, or do any of these more quickly. Once
these incremental techniques are introduced, engi-
neers start feeling more at home with those aspects
of the methodology and are much more prepared to
start using other aspects when the proper time comes
{e.g., the start of a new project).

Some progress has been made with respect to a
particular project when the managers say ~~We are
convinced, but how do we convince our engineers?’”
It often has been the case in such an environment that
their engineers say “"We are convinced. but how do
we convince our management?’

Finally. say, the engineers and their management
are convinced of the practical advantages of using an
effective methodology but become nostalgic for the
old days, thinking that poorer methods left more
room for creativity. It is true that an effective meth-
odology provides more constraints for the designers
but onlv in the area of preventing the production of
errors. As a result, creative designers should be /ess
constrained in producing better designs. Once the
project manager recognizes this. selection of a meth-
odology is imminent.

DESIRABLE PROPERTIES FOR A
METHODOLOGY

A methodology can support but never replace a de-
signer. A tool can be developed to replace some of the
designer’s functions in general or even all of them for
a particular project: however, the designer still has
the prerogative to create new designs and design new
uses for the same tool or new tools for different uses.

Too often the same problems exist in the develop-
ment of methodologies as do in the problems the
methodologies are intended to address. That s, there
are often inconsistencies within a methodology. In
addition, improvements to a methodology are often
ad hoc, and modifications to a methodology to fix or
enhance it are made to already existing modifica-
tions. Likewise, in the attempt to select an existing
methodology. there is always a risk of comparing (1)
techniques addressing very different problems, (2)
techniques intending to address a problem. but not
effectively addressing it at all, (3) techniques with
respect to nonexistent or ill-defined requirements, (4)
the syntax’" of methodologies instead of the “'se-
mantics of methodologies. {5) techniques based on
unfamiliar paradigms with preconceivad notions, (6}

32

techniques addressing the wrong problems or those
that are ‘‘in the noise,”” (7) techniques with respect to
completion or amount of use rather than to the prob-
lems they are solving, and (8) techniques with re-
spect to the algorithms they are being used to define.

There are many methodologies today whose in-
tent is to provide standards and techniques to assist
the engineer in the design and verification process
[3]. The developers of these methodologies are all
proponents of reliable designs, and most methodolo-
gies advocate some similar techniques towards this
aim. For example, it is commonly accepted that it is
beneficial to produce a hierarchical breakdown of a
given design in order to provide more manageable
pieces with which to work. However, there are vari-
ations among methodologies. Some emphasize a
concentration of data flow as opposed to functional
flow [4-7]; others, just the opposite [8-10], or both
functional and data flow equally [11]. Still others
emphasize documentation standards [12,13], graphi-
cal notation [14], or semantic representation [15].

There are certainly positive aspects in many of
these methodologies and, in particular, in what they
are trying to obtain. However, to make comparisons
among them or to determine the effectiveness of
individual ones, it is necessary to determine the
properties by which to make those comparisons.

From our own experience in developing large sys-
tems, we have determined a checklist of properties
by which to analyze the techniques or the methodol-
ogy being used by a particular project. We believe
that these properties are necessary if a methodology
is to be effective in the design and verification pro-
cesses of a large system development.

We make the assumption that a methodology should
have techniques for defining systems that are con-
sistent and logically complete; but these tech-
niques are useful only if they are within them-
selves consistent and logically complete, both
with respect to each other and to the system to
which they are being applied.

A methodology should have a standard set of defini-
tions that resides in a well-publicized and evolving
glossary. In our experience, we discovered that a
mere change in the definitions of such terms as
error and system could have far-reaching practi-
cal implications on a large system development
process [16].

A methodology should have the mechanisms to de-
fine all of the relationships that exist in a system
environment [17]. This includes communication
within and among systems and the resource allo-

M. Hamilton and S. Zeldin

cation! that provides for such communication.
Thus, not only must all data, data flow, functions,
and functional flow be able to be defined explic-
itly, but the relationships (and control of the rela-
tionships) between data and data, function and
function, and data and function must be able to be
defined within any given system environment.

A methodology should have the mechanisms to de-
fine all of the relationships that exist between
possible viewpoints (or development layers) of a
system. If, for example, one is concerned with a
definition of a system, it is viewed with respect to
what it is supposed to do. If one is concerned with
a description of a system, it is viewed with respect
to whether or not the definition is effectively con-
veyed. If one is concerned with an implementa-
tion of a system, it is viewed with respect to
whether or not the system is constructed to do
what it is supposed to do. If one is concerned with
an execution of a system, it is viewed with respect
to whether or not the system does what it is
supposed to do. Whereas the description and im-
plementation layers of a system represent static
views, the definition and execution layers of a
system represent dynamic views.

A methodology should have the mechanisms consis-
tently and completely to define an object and its
relationships formally. That is, every system in
the environment of an object system (people, hard-
ware, tools, software) should be able to understand
a definition of an object and its relationships the
same way.

A methodology should provide for modularity. That
is, any change should be able to be made locally
(with respect to levels and layers of development),
and if a change is made, the result of that change
should be able to be traced throughout both the
system within which that change resides, through-

'Resource allocation is the process (or system) that prepares
one system to communicate with another system. (Such a process
is, of course, a communication process with respect to the re-
source allocation of itself.) We define resource allocation in this
way because of our finding that various engineers, including nu-
merical analysts, programmers, hardware designers, and others,
use “‘resource allocation™ to mean very different things that reflect
each of their specific interests. A definition was sought that de-
scribed the process that focused on the fundamental feature of
allocating resources, regardiess of the characteristics of the spe-
cific resource. By having a definition that is concerned with the
general property of resource allocation, ad hoc formulations are
not required. In addition, one can then ask some fundamental
questions about the ways in which systems can be constructed,
regardless of the specific project. We have sought other definitions
as well with the same aim in mind, i.e., to uncover fundamentals
on which systems can be designed, constructed, and verified.

Relationship Between Design and Verification

out other systems within that system’s environ-
ment, and throughout all evolutions of the devel-
opment of that system.

A methodology should provide a set of primitive
standard mechanisms that are used both for defin-
ing and verifying a system in the form of a
hierarchy.

A methodology should provide for a library of an
evolving set of more powerful (with respect to
simplicity and abstraction) mechanisms based on
the standard set of primitive mechanisms. Having
an extensible library of mechanisms can serve as
management standards as well as save a lot of
time for everyone involved in a project. (Why
should only one designer have Arabic numerals
available to use in performing long division when
all the rest are still trying to use Roman numerals
[18]2).

A methodology should allow system engineers to
communicate in a language, with common seman-
tic primitives and a familiar dialect, that is exten-
sible. flexible. and serves as a “library™ of com-
mon data and structure mechanisms.

A methodology should provide for a development
model, including a set of definitions, tools and
techniques, that supports a given system develop-
ment process.

Finally. not only must a methodology be effective.
but it must also be able to be used as well, and the
results of that use should be made available to
others.

[t is no coincidence that our own methodology has
evolved with properties that correspond to those
which we consider to be desirable ones for designing
and verifying systems, since it was our direct experi-
ence with large systems that yielded the basis of
the methodology of Higher Order Software (HOS).

SOME PROPERTIES OF HOS IN TERMS OF
AXES

AXES, a specification language based on HOS, is a for-
mal notation for writing definitions of systems. Al-
though it is not a programming language, AXES is a

control axioms,
objects

empir:cal data

33

complete and well-defined language capable of being
analyzed by a computer. AXES | 19] provides mecha-
nisms to define data types (in order to identify ob-
jects), functions (in order to relate objects of types).
and structures (in order to relate functions). AXES s
the vehicle to define a system so that interface spec-
ifications can be automatically checked statically. The
foundattons of AXES are based on a set of control ax-
ioms derived from empirical data of large systems | 2|
and on the assumption of the existence of a universal
set of objects. Figure 1 illustrates the evolvement of
the primitive AXES mechanisms from the control ax-
ioms and the existence of the objects used to define
systems. Each axiom describes a relation of imme-
diate domination with respect to a functional system.
We call the union of these relations control. From
these axioms a set of three primitive control struc-
tures have been derived [20]. The primitive control
structures identify control schemata on sets of ob-
jects. From the assumption that we can identify an
object or a set of objects, a mechanism for defining an
algebra for each distinct set of objects is provided in
AXES. Each algebra takes the form of a set of axioms
that relate operations applied to objects of a type. To
form a system, new control structures are defined in
terms of the primitive structures (Figure 2), or in
terms of other nonprimitive control structures (Figure
3). Operations are defined implicitly by deriving them
mathematically from the axioms on a type or explic-
itly in terms of control structures using already de-
fined operations on a type. When an operation is de-
fined both implicitly and explicitly, the intent of the
specification can be cross-checked for correctness.

Once we have a library of control structures, data
types, operations, and derived operations. we arc
ready to form a particular AXES definition using these
mechanisms (Figure 4): Figure S. a graphical illustra-
tion of an AXes definition, demonstrates the integra-
tion of the concepts illustrated in Figures {—4. Here
the top node of the system is concerned only with the
top-level function of defining all predictable systems,
whereas the second-level nodes are concerned with

Figure 1. Define primitive axi1s mechanisms.

analyze

primitive control structures, !
primitive data type, | o
universal derived operations, ’ l
universal operations R
\\ R

derive create primitive vontrol map

34

M. Hamilton and S. Zeldin

empirical data, gontrol structures,
primitive control structures, ata types,
primitive data type, operations,
universal derived Operations, derived operations

universal operations

evolve mechanisms from primitives

Figure 2. Evolve new AXES derived mechanisms from
primitives.

functions such as analyzing the empirical data to pro-
duce axioms and objects. These axioms and objects
in turn are used as input for deriving primitive control
structures, a primitive data type, universal derived
operations, and universal operations. These objects
are then used as inputs for defining systems. The third
level represents the decision “‘go’’ or *‘no go.’”” That
is, if there are no empirical data left, all systems in the
world are defined. If there are empirical data left,
there are more systems in the world to define. The
fourth level represents a recursive pass of ‘‘define
systems’’ (on the second level) and the whole process
of evolvement starts again.

AXES systems are those systems that are defined
directly with AXES or with mechanisms defined with
AXES. AXES was designed to have a capability for de-
fining both the relationships within a given system
environment and between development layers of that
system'’s development process.

Since AXES systems are HOS based and HOS is
based on a consistent set of rules or axioms, all AXES
systems have a formal set of properties. HOS em-
phasizes completeness of control, where control is
defined by axioms that establish the relationships for
invocation of functions, input and output, input ac-
cess rights, output access rights, error detection and
recovery, and ordering of functions. Control affects

Figure 3. Evolve new AxEs derived mechanisms from
existing AXES mechanisms.

create control map

an object, the relationships of an object, and the re-
lationships of the development of an object. Everyone
defining a module using AXES must follow the same
rules in constructing the structure of that module. For
example, not only is every object in a system con-
trolled, but every object has a unique controller. The
intent is to eliminate ambiguity in understanding
either the behavior of an object or the behavior of that
object’s relationships.

There are many aspects of modularity inherent in
AXES systems. For example, the definition of the be-
havior of an object is completely separated from the
definition that uses the object; the definition of a de-
velopment layer is independent from those layers that
evolve from it (for example, the specification of a sys-
tem is independent of its implementation); and AXES
provides a way of defining control mechanisms that
are functional, as opposed to procedural. (The defi-
nition of a control mechanism specifies total ordering
among functions, which implies that the description
of that definition is order independent. This does not
rule out the possibility, however, of describing a pro-
cedural process as a functional mechanism.)

AXES systems also display other distinctive prop-
erties of modularity:

Both the mechanisms defined with AxEs and the
systems defined with these mechanisms behave
as if they are ‘‘instructions’"; e.g., a given control
structure has no knowledge about a higher-level
control structure.

Control, or the chain of command, can be traced di-
rectly on a control map. As a result function flow
(including both input and output) can be traced di-

empirical data,

control structures,
data types,
operations,
derived operations

REVISION N

control structures,
data types,
operations,
derived operations

REVISION N+1

evolve mechanisms from mechanisms

create control map

Relationship Between Design and Verification 35

control structure

\\\

JENESESESEE
‘\\:::\members of a data tywoe

- operation

primitive operation or
previously defined operation
or structure

rectly. Changes can be traced and changes can be Figure 4. Bird's-eye view of control map constructed from
made locally. AXES library.

The single-reference, single-assignment property of
AXES systems provides for an interesting set of re-

. . whole and nor artificially separated for the sake of
source allocation alternatives.

modularity: for such a separation has often resulted

An AXEs definition can be viewed as a specification in enhancing the errors in a system. That is, at any
that can be directly implemented in terms of a dis- node in an AXESs hierarchy a user is able to identify an
tributed processing environment. Other types of object with respect to an integrated set of aspects of
implementations (e.g., multiprogramming and se- control that inherently incorporates tvpes of defini-
quential processing) are special cases of a distrib- tional models and viewpoints of those models.

uted processing environment,

We have found, however, that other aspects of a func- Figure 5. Axes control map defining system ot defining
tional specification should be treated as an integrated AXES systems.

systems = Define Predictable Systems{empirical data)

-

cojoin
A
——— »
mpirical data, rimitive control structures,
primitive control structures, primitive data type, ‘control control
systems = Define Systems primitive data type, universal derived operations, = Derive axioms, axioms, = Analyze(empirical data)
universal derived operations, universal operations objects objects
\ universal operations
or
empirical data = ¢ empirical data # ¢
systems = Freeze Library(A) systems = Befine Particular System(A)
cojoin
empirical data, control structures,
systems = Define Systems control structures, data types, = gvolve Mechanisms(A)
data t)_'pes, operations,
operations, derived operations,

derived operations

36

With respect to aspects of control, the input—out-
put behavior of a system is not treated apart from
other aspects, such as ordering (which includes prior-
ity, degree of concurrency, and synchronization) and
error handling (which includes detection and recov-
ery). With respect to models, every node of an AXES
hierarchy represents a controller (the definition of
which, in terms of structures, is a user model) that
relates functions (the definitions of which, in terms of
operations, are a functional model). Those functions
in turn relate input to output (the definitions of which,
in terms of data types, are an informational model).

Furthermore, every node on an AXES hierarchy is
expressed in terms of its viewpoints {i.e., definition,
description, implementation, and execution).
Whereas each node as an object is defined in terms
of AXEs statements, the description of each node ex-
ists in the form of the “‘pencil marks’® of AXES state-
ments. The implementation of an AXES object is per-
formed by using the description of that object as an
input in determining an equivalent form of definition
of that object for purposes of residing on a particular
machine environment. An execution of an object oc-
curs when that obiect is assigned to a name. {In AXES
an execution for a particular system begins once an
object is assigned to one of its names. A system has
completely been executed once objects have been
assigned to all of its names. Theoretically, then, one
could describe, implement, and execute a system by
the very fact that its definition exists!)

The fact that aspects of control, types of models,
and viewpoints are inherently integrated with respect
to each other at a given node significantly simplifies
any given system definition. Furthermore, each user
in a development process of an AXES system is able
to relate to every node in a unique way (the manager
with respect to control, the designer with respect to
definition, etc.).

With AXES, any system can be defined in terms of
a set of standard primitives. The primitive control
structures provide rules for the definition of depen-
dent functions (e.g., sequential processing), inde-
pendent functions (e.g., parallel processing), and
selection of functions {e.g., reconfiguration).
Combinations of primitives form more abstract con-
trol structures. It is also possible to tell when a design
has been completed since a complete design is one
that has been hierarchically decomposed until all ter-
minal nodes of a control structure represent primitive
operations or previously defined structures and op-
erations. Since AXES has a common set of specifica-
tion primitives (i.e., a common specification ‘*ma-
chine™), we envision common tools, such as an
analyzer to check for correct interfaces and a re-

M. Hamilton and S. Zeldin

source allocation tool to prepare a specification for a
particular machine environment [1].

Although a system can be defined directly with
AXES, a more powerful use of AXES can be made by
defining systems that are themselves a set of evolv-
ing mechanisms for defining systems. Thus a set of
specification “‘macros’” can collectively form a ‘‘lan-
guage”’ (or management standards) for defining a
particular system or family of systems. It is envi-
sioned that each new system user is able either to use
a subset of already defined statements in an AXES
based library or to add new statements since the
AXES language system provides for extensibility with
respect to both structure and data definitions.

AXES provides a user with the capability of using
Samiliar dialects for a control structure or data type.
Thus, for example, a manufacturing project might
have its own set of specification statements to use as
a means of standardization, as might an avionics
project; but both should be able to intercommunicate
since these structures are based on standard primi-
tive mechanisms to which they can both relate.

AXES is intended to provide the mechanisms to
define both a development model and the manage-
ment of a system development model, which uses
that development model, as systems, since that is,
after all, what they both are. Within the context of a
complete development process, a means is provided
to define management standards, definitions, mile-
stones, disciplines, phases, tools and techniques, and
the relationships among all the various components
within a development process. A first step in this
direction can be found in [1,17].

SOME PRELIMINARIES ON AXES

AXES uses the functional notation
v = flx), H

where x is the input, y is the output, and f is the
operation applied to x to produce y.

In attempting to define a system as a function, we
assert that for every value of **x"’? we expect to pro-
duce one and only one value for “"v.”” That is, we ex-
pect the system to produce predictably the same re-
sult each time we apply f to a particular value.

Now, we must incorporate into our definition a
means to identify all of the acceptable inputs and
outputs. In AXEs, each input and output value is

*To differentiate an object from its name, the ‘‘use-mention
distinction’” is used throughout this paper [35]. That is, to form the
name of a given name {(or written symbol of any kind) we include
that name (or symbol} in quotation marks.

Relationship Between Design and Verification

associated with a particular set of values, called a
data tvpe. The syntax for each algebra, or data type
definition, is similar to that used by Guttag [21]. but
the semantics associated with each algebra is similar
to the concepts described by Hoare [22]. The seman-
tics of our algebras assumes the existence of objects
{see Appendix 1). That i1s, when we define a system,
as in (1), we assume the values v and v to exist and
that when [is applied to x, v corresponds to the
value .

In many systems. especially large ones, it is often
not readily apparent which input values correspond
to the system’s intended function until the system is
decomposed into smaller pieces. Although we start
with a large set of ““seemingly’ acceptable values. a
predictive system must be able to identify ““truly™
acceptable inputs or to produce an indication that a
particular function will not be able to perform its
intended function. To identify a system’s intended
function, we make use of a distinguished value,
which we call Reject (Figure 6). This distinguished
value i1s a member of every data type. If an input
value corresponds to the value Reject as an output,
then the function applied to that input is said to have
detected an error. A function applied tg an input
value of which Reject is a component |e.g., the value
(1,3, Reject)] may either assign Reject as an output
value. or “'recover’” from the error by assigning an
output value other then Reject.

Once we have identified all acceptable inputs and
outputs of our system. we need a means to describe
the relationship between the input and output, some-
times called the performance of the function. Rela-
tions on a set of operations give rise to a hierarchical
structure, like the structure appearing in Figure 7. At
each node in our hierarchy we shall put a function,
with the intent that at any level of our hierarchy (a
level is a set of immediate dominated nodes with
respect to a particular node, sometimes called a step
of refinement). we can relate the functions at that

37

level to the function at the node immediately domi-
nating them.

We need a set of rules to determine a level, and «
set of rules to determine whether we want to create a
level. To determine a level, we want all the functions
at the nodes of a level to be necessary and sufficient
for the replacement of the function at the node di-
rectly controlling these functions (Figure 8). This will
ensure that we get no more or no less than we want,
i.e.. that our level is logically complete.

As we continue to build our hierarchy, each level
completely replacing the function ut the node di-
rectly above it. we must be able to define each point
at which we want to stop. We stop when we reach a
function whose behavior. i.e.. its input and output
relation, has been defined in terms of other opera-
tions on a defined type. and our specification is
complete when we determine cach stopping point.
Now. if we know the behavior of each function at a
bottom level and how it relates to the other functions
at that same level. we know the behavior of the node
directly above it. With the same rcasoning, we know
the behavior of the functions at each level succes-
sively closer to the root. or top node: similarly. we
end up knowing the behavior of the root function
itself, Thus the behavior of the top node is ultimately
determined by the behavior of the collective set of
bottom nodes (Figure 9).

Now we also want to assure logical consistency
for a level. Since our intent, in the end. is to under-
stand the behavior of the function at the top node.
every time we talk about a value ot rhat function we
want to assure ourselves that we are talking about
the same value at the level directly dominated by that
function: that is. we want to be able to determine
which values match up with which functions. To talk
about a value we use its name. or variable. We want

Figure 6. Acceptable vs intended values ot a function,

intended
function

unintended

function

38

Figure 7. Hierarchical system structure.

to be consistent about input variables (Figure 10) and
output variables (Figure 11). To avoid specification
errors in naming values, a particular name is always
associated with the same value as we travel down the
hierarchy.

We also want to be able to determine which func-
tions are more important than others. For example, a
function is always more important than the functions
at the level dominated by that function, and at a
particular level each function is assigned an impor-
tance with respect to each other function at that level
(Figure 12). Among other things, we can use this
information to implement specific timing relation-
ships, both relative and absolute, without conflict.

The above concepts, defined in terms of axioms
[2], are inherent in every AXEs defined mechanism.
Now let us see what all this means if we try to specify
a particular function. For the purpose of demonstra-
tion we select the function that is to produce the
greatest common divisor (GCD) of two natural
numbers.

Figure 8. Level completeness.

replace

M. Hamilton and S. Zeldin

/

-
=y an

Figure 9. Endpoint completeness.

To define GCD implicitly, we have the following
AXES definition [19, Appendix IV].

Derived Operation: 1, = GCD(n,, n.,):
where 71, #n,, 1y, n are Naturals;
Factor (GCD(n,, 1), ny) = True: (2}
Factor (GCD(n, n3), ny = True; 3

Entails (And(And(Factor(n, n,), Factor(n, n,)),
Not(?Equal?(n, Zero))), Factor(n, GCD{n, 1))
= True: C
end GCD;

Each operation in terms of which GCD is defined is
checked to determine if it has been previously de-
fined. Each defined operation must eventually be
able to be traced to a definition of a primitive opera-
tion on a defined type (Figure 13). This could be
performed automatically. Here, GCD is defined in
terms of Factor, an operation on two naturals that

Figure 10. Tracing input names.

Relationship Between Design and Verification

f(x)

y = p(g)

Figure 11. Tracing cutput names.

produces a Boolean, which tells us when one natural
is a factor of another: Entails, an operation on two
Booleans that produces a Boolean, provides a notion
of entailment; And, an operation on two Booleans
that produces a Boolean, and Not, an operation on a
Boolean that produces a Boolean, have the usual
logical meaning on Booleans; and ?Equal?, which is
a primitive operation on two naturals, provides us
with a notion of equality for naturals.

Each statement about GCD in the derived opera-
tion definition is an assertion about GCD. The set of

(Naturals)

| GCD

_———’/ \
Factor {on Naturals)

PEquals?

{on Naturals)
Not

{on Booleans)

\

Q(on Booleans) / \

39

Figure 12. Complete ordering relitionships.

statements about GCD must itself be shown to be
consistent with the axioms of the type natural from
which it is derived. The proof that GCD is consistent
with these axioms is performed manually.

The technique of detining derived operations in
AXES was introduced to limit the complexity of defin-
ing a type. The idea here is to define a type with the
least number of axioms required to characterize the
behavior of the objects of a type: then we can build

Figure 13. Tracing definitions of operations to primitive
operations on a type.

Lo TT TS /’_—\
(\ PEqual? > (on Naturals)

Entails {on Booleans)

Or

/ 7\(on Boolea

=~
AY
(_‘ Ndiff) (on Naturals) @
reject /

(on any 1ype) {on any type)

/ (on
! Sum] Naturals)

)“\
S

(on Naturals) {on any type)

Kre_]ect

Derived
Operation

I] = QOperation
| N—

Primitive
Operation

40

on our basic definitions and simplify our task of
proving the consistency of a set of axioms. In a
sense, we wind up building a hierarchy of axioms.
Without a concept of derived operations we would
either have to limit the number of operations allowa-
ble on a type, as suggested in languages like cLU
[23], which might make a large system specification
quite cumbersome to understand, or add a few more
axioms to our type definition each time we intro-
duced a new operation, as suggested by Guttag {24],
thereby imposing on ourselves the task of proving
the consistency of possibly hundreds of axioms in a
large system environment.

Operation: y = GCD(x,, v,);
where (x,, y,, y) are Naturals,
(x,, y,;) are Naturals:

GCD: y = A(x, ¥o) or
x#0 Or ¥#0

¥ = Reject ;
Xp=0 And ¥=0

Aty =y, coor

2o=0

y = Blxg, yo|
2o#0

B:y=A(x,,y) join

(x4, 1) = Clxqg, ¥ols

C: (xy, ¥,) = D(xy, ¥y) or

yo=x

0
(-xls yl) = XCh(XO’ y(])

Yo <Ly

D:x, = x, coinclude

Y1 = Yo~ X
end GCD;

The explicit algorithm shown in the operation above,
introduced by Manna and Waldinger [25], is defined
here in terms of structures that relate operations.
Whereas a structure is a relation on a set of map-
pings, i.e., a set of tuples whose members are sets of
ordered pairs, an operation is a set of mappings that
stand in a particular relation. An operation results,
mathematically, from taking particular mappings as
the arguments (nodes) of a structure. By a function,
we mean a set of mappings that stand in a particular
relation for which particular variables have been
chosen to represent their inputs and outputs.
Whereas structures and operations can be described
as purely mathematical constructs, a function is a
hybrid consisting of a mathematical construct and a
linguistic construct, i.e., an assignment of particular
names of inputs and outputs. Note that our use of the
term ‘‘function’ is slightly different from that in
mathematics.

In the operation definition for GCD, a hierarchy of
functions is obtained (Figure 14) by using defined
structures and ‘‘plugging in’’ particular operations

M. Hamilton and S. Zeldin

and particular variables to represent the inputs and
outputs. With respect to the GCD definition, A, B,
Clone,, C, D, Xch, Kggect, and Ndiff are functions.
With respect to GCD as an object to be used, GCD is
an operation because a user can supply his own
particular input and output variables to use GCD as a
function for another system definition. [Note that the
alternative forms for Clone, and K gejec; are used in
the corresponding AXES statements (see Appendix 2)
and an alternative infix form for Ndiff using the
symbol ‘="’ for **Ndiff’’ is used in the AXES descrip-
tion.]

The particular structures used in the GCD opera-
tion definition are or, coor, join, and coinclude. The
definitions for these structures can be found in Ap-
pendix 2. or and join are two of the three primitive
structures. The third primitive structure, which was
not used for GCD, is include, the definition of which
also appears in Appendix 2.

All of the nonprimitive structures used to define
GCD explicitly are defined in terms of the primitive
structures. For example, in Figure 15 the coor struc-
ture is built from the join, or, and each structures.
The first level of decomposition for GCD is defined in
terms of the primitive or structure. In this case the or
is being used to define the relationship among GCD,
A: and KReject-

In using the set partition control structure (or
AXES ‘‘or”’ statement) for the relationship among
GCD, A, and K gesect, We can check that the input and
output to GCD is the same as the input and output to
both A and Kpgjee- In this case, A and Kgejee, are
partial functions of GCD. The control schema for set
partition assumes the existence of data type Property
(of T) (see [19]), where T is a type. A property is
something that maps other things onto truth values.
In Figure 14, where or is used for GCD, A and K geject
“xo # 0 Or y, # 0 is a particular property on
naturals and “‘x, = 0 And y, = 0"’ is another particular
property on naturals. For a set partition, the two prop-
erties are mutually exclusive, but one or the other
must apply for any value of the input set of a function
at the node controlling a level.

To decide whether to decompose functions K geject
and A, we determine whether either function has
already been defined. Since Kygeet iS an already
defined operation on any type (it produces a Reject
value for any input; see Appendix 2), we know we
need not decompose it. A, on the other hand, has not
been defined elsewhere, so we proceed to decom-
pose it. The level of decomposition for A is defined
in terms of the nonprimitive coor structure.

Only B must be decomposed as we proceed down
the hierarchy associated with GCD because Clone, is

Relationship Between Design and Verification

y= A(XO’yo)lxo # 0 Or Yo #0 y = K

e

41

«
il

GCD(xO,yO)
or

P

reject(xo’y[)]lx\,) = 0 And
Yo = 0
coor

y = Clonel(yo)lx(] -0 y = B(xo,yo)lx(‘ ‘0

Figure 14. A control map equivalent to the
ANES statements for the GCD operation.

(xy,yy) = Dlxg,yy)
171 00|y0ix0

e

1

a defined operation on any type (it provides a notion
of corresponding the same value; see Appendix 2). B
is related to A and C by means of an AXES "“join™
statement.

In using the composition control structure (or
AXES “join' statement) in defining the relationship
among functions B, A, and C, we can check the fol-
lowing: the input to B must appear as input to C; the
output of C must appear as input to A: and A must
produce the output for B.

In the operation definition of GCD, note that re-
cursive functions are formed by combining control
structures (see ""A"" in Figure 14). In this case, the
total hierarchy is formed dynamically, where each
occurrence of "A " requires a different input value.
Although we statically check to assure that there is
some input value that will produce an output, proof
that the chosen algorithm will find that input cannot
always be checked. A good discussion of this problem
can be found in [25]. If an operation has a correspond-
ing derived operation definition, we can use this in-
formation to help prove the possibility of termination.

We continue to decompose each function at each
level until we reach the point at which a previously
defined operation or structure appears. In the GCD
case, we check Clone, Ndiff, K e, and Xch. Ndiff
has already been mentioned as an operation on natu-
rals. Xch is an operation that exchanges the ordering
of an input. Although previously defined [26] in
terms of operations Identify, and Identify, (whose
definitions appear in Appendix 2), we show the Xch

X, = Clonel(xo)

join

Y = Alxy,y)) (x.y,) = Cixguygd

or

xp,y)) = Xch[x‘,,y0)|y0 < x

P
e

coinclude coinclude \

¢}

~ \

Yy = Ndiff(yo,xo] X = Identifyz(x”,y(]) o Identlfylkxo,yn)

definition in Figure 14 (with dotted lines for informa-
tion purposes only). A previously defined operation
need not be decomposed each time it is used.

The technique of defining structures in AXES was
introduced to limit the complexity of interface defini-
tions among systems. Interface correctness can be
checked statically by comparing the use of a struc-
ture to its definition.

We can extract certain computational properties
from the GCD operation definition and use these
properties to implement our specification in a pro-
gramming language. A representative implementation
is shown in Figure 16 graphically in terms of an HOS
structured design diagram [27]. which is now auto-
mated as a Universal Flowcharter [28.29]. We shall
make the same assumptions as Manna and Waldinger

Figure 15. Tracing definitions of structure to three primi-

tive control structures.
—
coor i
/

—

B @
©

42

do; that is, the programming language used has inte-
ger types, but not naturals.

Although the restriction to naturals is asserted in
[25], we explicitly include area 3 of Figure 16 to avoid
misuse (an often occurring event during de velopment
of large programs). We check our input to GCD (Fig-
ure 14) with our input to Program B by area 1 and our
output by area 4. If x, and v, both have the value of
**0,” then there is no greatest common divisor. In this
case, we have implemented the specified K;.; func-
tion of Figure 14 as an error message (area 3). Again,
leaving area 6 as an assertion in the form only of a
comment could cause an interface problem.

Note that each time the recursive function A of
Figure 14 is to be invoked, the specification indicates
that the initial values are no longer needed once the
next invocation of *“*A” is to be executed. We make
use of this fact in Program B by allocating the tempo-
rary variables ‘‘x’ and “‘y’’ for each new value.
Areas 7-10 of Program B implement function A from
our specification of Figure 14.

There are basic assumptions implied in this imple-
mentation that may not be correct assumptions for
all applications: (1) The expression **(x, y) < (y, x)"
implements the Xch operation. An example of misin-
terpretation of this expression would be a compiler
which would first store the initial value of *‘y’” and
““x’" and then take the new value of **x’" and store

that in “‘y.’" (2) Single statement restart capability is

Figure 16. Graphic description of GCD implementation.

Program B

. 1
input (xO,yO) (D

r

(Y« (xgoyg) | @

M. Hamilton and S. Zeldin

either not required or, if required, is an inherent
compiler capability. This type of ultrareliability is
often required, for example, in aerospace real-time
applications. Suppose the expression ‘“(x, y) < (v,
x)”" were executed and a restart occurred before the
program counter advanced to the next statement.
Without restart protection, area 10 would be exe-
cuted over again with the new value of **y™” and “*x”’
and could, under some conditions, give the incorrect
results. These two assumptions would have to be
validated as ‘‘interface’ correct for our particular
application. If another implementation is desired for
special applications, we start with the same specifi-
cation (of Figure 14) and use the computational prop-
erties of that specification to derive a new
implementation.

We have found that the same design techniques
that are used to design a layer, where that design
process supports the verification for errors within
that layer, can serve the dual purpose of supporting
the design and verification processes between devel-
opment layers (e.g., between specification and the
implementation of that specification).

It is in such a process, that of going from one layer
to another, that we are made more aware of the
significance of the separation of the *‘what’” from the
“*how.”” For not only is it the case that the conven-
tional specification process today is more complex
than it need be because it confuses the specification
with implementation considerations, but it is also the
case that the conventional implementation process is
more complex than it need be because its specifica-

__-[Print "inputs out of limit”J (3)

Lifx<00ry<0>—

| outéut&i I {4)

Print "undefined" | (s}

(9)

(x,y) < (y,x)] (10)

Relationship Between Design and Verification

tion is confused with implementation considerations
(and, more often than not, considerations that are un-
realistic, incompatible with a particular implementa-
tion environment, unfeasible, or technologically out
of date) or because some specification information is
completely missing.

Since an AXES control hierarchy includes all of the
information about the objects and the relationships
of those objects in a given system, if we wanted to
implement a specification in terms of, for example, a
software program (such as the GCD one), we could
make use of such a specification on a one-to-one
basis with any of its possible implementations.

For any implementation, any function on a control
map could be implemented as a procedure, a pro-
cess, or as a set of in-line statements within a proce-
dure or process. One implementation of a given
specification could be multiprogrammed, another
multiprocessed, and still another sequential. Values.
variables, and data types can be directly translated
into programming language representations of these
objects.

The definition of operations on data types pro-
vides not only the set of operations that are allowable
in an implementation, but also serves as a basis for
checking correctness of intent. If, however, an oper-
ation is implemented as a subroutine, decisions af-
fecting data transfer, such as "*caLL by name’ or
carl by value,”” could vary from implementation
to implementation.

The layer and level relationships with respect to
communication and resource allocation can be used
in the assignment of input and output access rights,
data flow. functions that are to be invoked, error de-
tection and recovery procedures, and order of exe-
cution of implemented modules.

The data flow can be traced directly on the control
map in terms of access rights assignments (i.e., input
can be traced down and output can be traced up the
control map), which suggests, of course, that the
access rights themselves can be readily determined
for any given implementation. For example, with re-
spect to scope, a variable only needs to be declared
at the level where it first appears. That same variable
“local™ to the level of the controller above it can also
be implemented as such.

It is not possible with the use of conventional
computers always to maintain a single-assignment,
single-reference status when going from a specifica-
tion to an implementation, but it is possible to re-
source-allocate more efficiently an implementation
when its specification is defined with single-assign-
ment, single-reference properties. This is true since
the status of any “*location™ is always known. Thus.

43

a reuse or a sharing of a particular location can not
only be determined, but a location can always be
shared when it is safe to do so.

Since every node on the control map explicitly
states all input and output variables, it is possible for
an implementation to be set up to implement alter-
native plans in the case of a failure.

Priorities can be determined readily for a particu-
lar implementation since there are some very specific
rules to be followed. (For example, a controller al-
ways has a higher priority than the functions it con-
trols.) Thus, a master sequencer-type of executive,
in an implementation, would always be forced to
maintain a higher priority than the functions (or pro-
cesses) it invoked. Other types of ordering consider-
ations and their alternatives, such as timing, are also
readilv apparent. It is clear. for example, that in the
implementation of a primitive composition control
structure some data from one function must be com-
puted before the other function is initiated; whereas
in a primitive set partition structure, only one of the
functions need be processed for a given performance
pass. Similarly, a primitive class partition would allow
for more than one function to be performed at a given
time should it be desirable to do so. These facts are
directly translatable to the wvarious ordering
options that are available in a specification for
the processing of those functions in a given
implementation.

A REAL-WORLD EXAMPLE

As an illustration of how AXES c¢an be used to repre-
sent functionally a system so as to lead the way
towards a reliable and efficient implementation. we
include here specifications for a satellite navigation
system called navpak. This system is intended to up-
date navigational parameters of Earth-referenced sat-
ellites with imaging data transmitted to the ground
from the satellite. The ultimate aim is to be able to
determine the orbit and attitude of the satellite pre-
cisely enough so that the imaging data can be used to
answer user queries. such as *"To what landmark am
I pointing?"" or **Where is Florida?™”

This example is intended to provide a specifica-
tion of the interaction, or relationship. among system
components for the case in which the orbit and
attitude of the satellite is not precisely known. In this
case, the imaging data is used to determine orbit and
attitude state estimations from landmark observa-
tions. The feasibility of an approach in which orbit
and attitude estimates are obtained from landmark
data extracted from Earth images generated by an
on-board radiometer has been investigated [30].

44

The process of determining orbit and attitude can
be done with varying degrees of automation. The
least automated approach is one in which the land-
mark observation is obtained manually by displaying
the imaging data (retrieved from data available on
files) directly on graphics devices. In this case, the
correlation function (i.e., correlating the geographic
coordinates and the coordinates of the displayed
image) is intended to be performed by a human user.
The function relating the observation to the state of
the satellite is to be performed by a computer. Here,
the computer processing includes the computation of
the landmark time from the coordinates of the dis-
played image, integrating the best known orbit—atti-
tude information to the time of the geographic coor-
dinates of the landmark (the time is geometrically
computed from known geographic coordinates asso-
ciated with the center of a given scene, or set of
images), computing the uncertainty of the observa-
tion, and, upon user request, an orbit—attitude—co-
variance matrix update based on a classical
“‘weighted least squares’’ statistical estimation algo-
rithm [31].

A total automation of orbit and attitude determi-
nation involves automating the correlation function
involved in the landmark registration in which pre-
processed landmarks are input to the system and
processed automatically one at a time (i.e., sequen-
tial state updates). When orbit—attitude information
is very imprecise, total automation is not feasible. At
these times, manual interaction with the processing
system is essential so that a person can make the
ultimate decision as to whether a particular observa-
tion should be incorporated or not. The system de-
scribed here is designed for automatic processing
with the capability for manual override at crucial
processing decisions.

The system structure (or set of functional relation-
ships) is as follows.

Structure: v = Navpak(x, s, [, ¢):
where x, y are States (of Satellites),
s, s' are Ordered Sets (of Images),
[, I' are Ordered Sets (of Places),
¢, ¢’ are Ordered Sets (of Ordered sets (of
Images)),
@ is an Option,
x', x" are States (of Satellites),
[, is a Place,
l, is an Ordered Set (of Places);
Navpak: v = fi(x, s, [, ¢, 8) cojoin
9 = Choose(x, s,);
fioy=Lfilxs o) or
#=Enter

y = B(x,s,{, ¢)

f#=Proceed

M. Hamilton and S. Zeldin

coor v = x :
g=Terminate

for v = Navpak(x', s', [’, ¢) cojoin
(x’, s', 1"y = Override(x, s,):

B: y=fyx. s, ¢, 1, 1) cojoin [, = First(1)
coinclude
[, = Second(1);
fy vy = Navpak(x", s, {,, ¢) cojoin

X" = extract/filter ;.. cne 04 (X, 5, [}, €)
failure X" =x;
syntax: Choose to Override x, s, /, ¢ and aid automatic
correlation by Intervene or qualify with QA to
obtain y.
end Navpak:

Figure 17 shows the hierarchy of functions for
navpak, a projection from the AXEs definition.

We begin with an initial estimate of the state of the
satellite x; a preselected ‘‘scene’” or set of images of
a portion of Earth s; a set of predetermined landmarks
or Earth-based locations /; and a set of image sets that
have been previously identified as images of particu-
lar Earth landmarks c¢. The intent is to produce a new
state estimate y.

navpak is related to its offspring, f; and Choose,
by a cojoin structure. Choose examines x, s, and /
and, based on these values, will produce a value of
type Option, which consequently gets used as input
to f,, which in turn produces y. Function f, is related
to its offspring f,, B, and Clone, by or and coor struc-
tures. In AXEs, a function can be replaced by its next
most immediate level of decomposition by simply in-
serting the level description appropriately in an AXES
statement, as in the decomposition for f,. In the case
of f1, the determination as to which function is to be
performed is dependent on the properties ‘' =
Enter,”” ‘6 = Proceed,”” and '@ = Terminate.”’ Re-
lated to its offspring, navpak and Override, by a cojoin
structure, f, provides the opportunity to select new
data with Override and then to go through the same
procedure recursively until the data are acceptable to
“‘Proceed’” to B or “‘Terminate’” accepting the initial
state value as the best state estimate. To Proceed at
B entails using the first landmark to update the state
by extract/filter (if extract/filter fails, the initial data
are salvaged for the next try) and then the remaining
set of landmarks, along with the new state estimate
x", is resubmitted to the next recursive instance of
navpak. The failure and extract/filter stru@ures, as
well as some operation definitions described in this
section, can be found in Appendix 2.

Each leaf of navpak is either a previously defined
AXES operation [in this example, Clone, is an opera-
tion for any type, First and Second are primitive op-
erations on type Ordered Set (of T)], a recursive in-

Relationship Between Design and Verification

Figure 17. navpak. £,

Navpak

vocation (navpak itselfis recursive), or an unspecified
function referred to in the user defined syntax (in this
example, Intervene, QA, Choose, and Override are
unspecified functions and are referred to in the syntax
statement appearing at the end of the Axes definition
for navpak).

Each variable is identified with a previously de-
fined data type [in this example, we refer each vari-
able to State (of T), Ordered Set (of T), Satellite,
Image, Place, or Option]. The navpak system re-
quires a large amount of data to be processed. Al-
though much of the data (such as the images and pre-
processed landmarks) are intended to be implemented
by file representations, this description concentrates
on the properties or characteristics of the data, leav-
ing unspecified a particular implementation. Data
types used for navpak are discussed in Appendix 1.

Once designed and verified, a structure is used for
an operation definition by identifying particular op-
erations for the unspecified functions and particular
variables for those variables mentioned in the user
defined syntax. For example, particular operations
for Choose. Override, Intervene, and QA and partic-
ular variables for v, s, /, and ¢ would be identified
when using navpak for an operation definition.

Particular operations can then be allocated, either
manually or automatically. to particular resources.
For example, particular Choose and Override oper-

45
Navpak
fl Choose
B Cloney
Override f3 First Second
/
< E =] a1 ~
Navpak “XtraCt/]llter[ntervenc. QAiallure Llone1

ations would most likely be assigned to human op-
erators in a navpak implementation. whereas First
and Second would most likely be allocated for com-
puter processing.

We could also use navpak to define another struc-
ture. In such a case, for example, K. an Operations
could be **plugged in” for Choose and Override in-
dicating that the “*use’’ of the use of navpak would be
the assignment of names of objects. This use of
navpak would ensure that the ultimate decisions
would be accomplished by manual interaction with
the processing system.

extract/filter is itself defined as an AXES structure
in this example. extract/filter determines whether the
landmark measurement is suitable to be used to up-
date the estimated state of the satellite. In Figure 18
a projection of the specification for extract/filter is
shown. Each operation that appears at a leaf node is
a specified AXES operation except for the two opera-
tions circled by dots, 7 and Q. These two operations
are the unspecified functions of extract/filter. The
syntax selected here for this structure is not as English
in character as it is functional, as compared to the sug-
gested syntax for navpak. Different syntactic forms,
including those which are graphical, may be chosen
for structures, depending on user preference. The
navpak structure uses extract/filter by substituting
“Intervene’” for /77 and QAT for Q.7 (Other

46

structures, such as or, cojoin, and failure are also
used to define mavpak.) In this case, we are using
structures to define yet another structure. In a similar
way, the extract/filter definition uses, for example,
the incorp structure (see Appendix 2).

The landmark extraction function Lmkrgs (see
Figure 18) integrates the vehicle state and covariance
matrix to the time of the landmark and defines the
uncertainty in the measurement. The landmark ex-
traction function may reject the measurement auto-
matically if it cannot find the landmark in the chosen
scene. Lmkrgs is a rather lengthy operation, dis-
cussed in terms of the data types vectors, matrices,
scalars, time, and angles in [32]. Of interest is the
fact that many submodules and groupings of sub-
modules were able to be used over and over again,
both within the definition of Lmkrgs itself as well as
for various other operations within navpak, specifi-
cally, operations Final and Update for the incorp
structure (see Appendix 2).

If the landmark extraction is not successful, the
measurement is rejected. If the landmark extraction
1s successful, the measurement is automatically cor-
related with a preprocessed image of the landmark
(see operation Find in Figure 18 and the expansion of

Figure 18. extract/filter, .

Lxtract/Filter

S

I\Ro_i ect

Lmkrgs
KRejcct
Find

}\chect

Search

KReject Iterate

Iterate Incorp ,'(.2 ’

Iterate Incorp **

M. Hamilton and S. Zeldin

Find in terms of operations on Ordered Sets and Im-
ages, Appendix 2) in an attempt to obtain a better
measurement time within the uncertainty *“window.”
(See operation Search in Figure 18, in which a region
is superimposed on the scene and the chip is matched
with the images in the window of the scene.) The cor-
relation is functionally related to the intensity of the
image and the intensity of the chip for each particular
location in the region being searched. The specifica-
tion for Search appears in Appendix 2, along with
structure definitions used to specify Search. If a neg-
ative correlation is found, the measurement is re-
jected automatically. If a positive correlation is de-
termined (see the operation Iterate, Figure 18), the
user has the option to incorporate the measurement
immediately by specifying a particular I function; if
this option is not exercised, automatic processing
continues until the region is considered completely
searched. If at any step of this process the landmark
is rejected, the error filters back up the extract/filter
structure. Subsequently, if extract/filter fails, error
recovery is achieved, as seen in the higher-level def-
inition for the navpak structure.

At each “‘better’’ correlation, the user may decide
to incorporate the measurement (see the operation
Incorp, Figure 18). When the ‘‘best™ correlation is
determined, the measured landmark is compared to a
computed landmark. The computed landmark is
used to construct a new region and the measurement
is tested to see whether it can be found within the
new region. If the measurement is not within the new
region, the measurement is rejected. If the measure-
ment is computed to be successful, the user may
decide to reject the measurement if not satisfied with
the results. This is accomplished by specifying a
particular Q function. If this option is not exercised,
the permanent state is updated, a successful instance
of navpak has been completed, and the next instance
of mnavpak uses the new state for its next
measurement.

EXPERIENCES WITH THE APPLICATION OF HOS

HOS has now been employed by our own staff in
several different types of application. They include
those that were familiar to our engineers as well as
some that were not familiar at the beginning of a
project. There was direct involvement in some appli-
cations whereas in others, involvement only on par-
allel efforts. Both original designs and redesigns have
been prepared. Likewise, in-line verification has
been performed on some projects, independent veri-
fication on others. In all of these experiences, a

Relationship Between Design and Verification

conscious attempt has been made to analyze our-
selves and others in order to enhance either our own
techniques or theirs.

Throughout this process, certain trends, patterns,
or common experiences have taken place. Phenom-
ena have been observed, both with respect to the
design and verification processes and to the other
processes, all of which are directly related to design
and verification.

Some Experiences on Specific Projects

One of the first projects was a respecification of the
Apollo Guidance Computer (AGC) operating system
(OS), an application familiar to us [26]. Unfortu-
nately. we had a great deal of difficulty reconstructing
the pieces. This was due mostly to the fact that the
AGC OS was poorly documented. Our only solution
for completely understanding the system (which in-
cluded our own results of various design processes,
including our own coding and our own verification)
was to go back and pour over the original code, which
was very clever and difficult to understand. When we
began this effort, we thought there was little in the
AGC OS upon which we could improve. This attitude
was partly a result of the fact that no errors were
found for several years within the OS itself. However.
when we attempted to respecify the OS, we discov-
ered that many of the development errors that oc-
curred in the application programs using the OS
would not have occurred if the AGC OS had certain
other inherent properties; for although the AGC OS
had properties of hidden data. it did not have prop-
erties of hidden timing. From this effort, we therefore
determined that the AxEs methods were very helptul
in demonstrating more reliable design goals with re-
spect to interfaces between application programs and
the systems software that executes these programs.

With respect to another project, Position Locator
Reporting System (PLRS), our charter was to select
the most complex module. specify that module with
Aaxes. and demonstrate the advantages of applying
an effective methodology. We did just that. This was
the first effort in which we attempted to use AXES in
an ongoing project. Not only was our aim to demon-
strate its effectiveness, but also to perform this task
without impacting schedules or deliverables. In this
process, however, we determined that the use of an
effective methodology can benefit not only a new
project. but also an ongoing project that already em-
ploys u different methodology [33].

When our engineers began this effort, the ongoing
project engineers were just completing the design of

47

their specifications and were about to embark into a
design phase that would result in the implementation
of computer code. As a result of our respecification
to one module in their system, it was possible to have
an understanding of the system and the methods
used to develop that system. Recommendations for
specific ways of enhancing both their system and the
methods to develop that system were made, although
this particular system was being developed with
methods that were beyond the sophistication of most
conventional systems today. In the process of defin-
ing standards for the chosen module (i.e., common
structures. functions, and data types), it was deter-
mined that many of these standards were not only
applicable to other modules in the system but to a
family of systems within which this one resided (i.e..
other communication network systems). During the
same respecification process, 16 categories of ques-
tionable areas, such as unanswered questions. incon-
sistencies. incompleteness, and redundancies were
determined. This was not only a demonstration of
the advantages of using an effective methodology.
but this information could be directly applied for the
next phase of development. It is our own opinion.
however, that many of these problem areas would
have been uncovered prior to our irvolvement had
an attempt been made during the specification phase
to integrate the top levels of the specification from
the beginning. (This same phenomenon was ob-
served in the Navpak project as well, and Navpak
had been around a lot longer than PLRS. In fact. a
“working' " implementation for it already existed. In
this case. the integration of specifications was often
missing since the problem was too "*familiar’” to the
Navpak engineers.)

One of the more interesting sets of observations
made was that involving a project for which a soft-
ware system was conceptualized and then developed
to completion by our staff. This involved the design
of the Universal Flowcharter in AXEs, which was im-
plemented in PASCAL [28,29]. The programmers. who
implemented the flowcharter, determined the design
of the code by using AXES specifications as a guide.
There were several different engineers on the project.
Some of them were involved throughout the project:
others only came in during the programming stage.
Although our charter was to build a universal flow-
charter. we were asked to apply AXES whenever pos-
sible. We had the unenviable positicn of attempting
to design something that had never been done before,
provide a design in light of continuously changing re-
quirements (this was as a result of both designing a
new concept and designing that concept for universal

48

use), deliver and implement that design in terms of
well-defined deliverables, and use a methodology
(which was our own) throughout all phases of devel-
opment (when this had never been done before). We
were also observing ourselves continuously to see
how effectively we were dealing with all of these
considerations.

As delivery dates got closer, some designers pan-
icked and decided to start implementing before all of
the data types were rigorously defined and therefore
before the control maps were completely defined.
Others forced themselves to complete the control
maps for a particular specification unit before imple-
mentation began. Of that set of modules that was com-
pleted, some had to be changed after implementation
began (e.g., some data types were too specific and
were better suited for another machine environment;
others needed to be defined in more detail). We did
find, however, that any errors that occurred in imple-
mentation were in those areas where the specification
was not complete before implementation. That is, if
all changes were negotiated and specified, chances of
an error in implementation were almost nonexistent.
The other modules (i.e., those that were not com-
pletely defined) were not only error prone, but took
much longer to debug than those modules whose
specifications were completed at least once before
implementation.

The Navpak project had the most implementation
details embedded in its specifications. A possible
reason for this fact was that the Navpak system was
already implemented in at least one form, and it is
often the case that engineers update specifications
further with implementation considerations when
more is thought to be known about the implementa-
tion. One of the potential problems they would have,
therefore, would occur when they wanted to make a
change to their existing system; for each time there
would be a change, it could be necessary to redesign,
or at least retest, the whole system. This could be the
case, for example, if a new user option were to be
incorporated. This situation is typical of conven-
tional methods and is a good example of how a
design problem can affect the verification process in
more than one iteration of a particular phase of
development. It is for this reason that we chose to
discuss a portion of this particular system in more
detail.

Although each of these projects has had its own
interesting aspects, it has also been quite interesting
to observe the commonalities that occur among proj-
ects. The process of applying a methodology to each
project has certain common elements, and the results
of that process also have certain common elements.

M. Hamilton and S. Zeldin

For example, the common process of defining AXES
modules within each given project produces the com-
mon result of identification of commonality between
modules in that project. As a result, new structures,
functions, and data types are defined and can be
added to the general AXES library, as well as to the
project specific AXES library. Errors, in particular in-
terface errors, are always found within existing sys-
tems, whether they exist as requirements or as com-
pleted code. In these projects, a comparison of the old
and new versions of a given module is always made.
One cumulative result of all these efforts is the list of
properties that are recommended for a methodology
(discussed in an earlier section) as well as sets of
project specific recommendations based upon that
list. For every ongoing project, a minimum set of rec-
ommendations is always made, if it is not too late to
make some incremental changes. For every project
just starting up, a more complete set of recommen-
dations is made. An example of one set of recom-
mendations is shown in Table 1.

Certain advantages, as a result of using a more
formalized approach, can be directly related to mak-
ing life easier for the designers and verifiers on a
project, as well as for the managers, implementers,
and documenters. Some of these will be discussed
below.

Acceleration of the Learning Process

The engineers who performed work on these projects
needed to go through a learning process of some sort.
This varied from learning a new application, to learn-
ing about someone else’s module on a familiar appli-
cation, to relearning one’s own module after some time
had elapsed. On these projects that had applications
with which we were most unfamiliar, such as PLRS,
we were able to take advantage of such a shortcoming
in order to test our methods as a learning technique.
Our method of understanding, in this case, was first
to attempt to construct a control map; by doing so,
we were able to determine existing functions and their
relationships. This process not only provided us with
an accelerated means of asking the questions that
should be asked to construct the definition of a mod-
ule, but it also became clear that this was a technique
for prompting questions that otherwise might never
have been asked; for during this process we found that
there were areas in the documentation that were
either not clear enough, missing, inconsistent, redun-
dant, or not integrated with other areas.

The fact that we were able to use the control map
technique as an accelerated learning process for our-
selves suggested to us that this same technique could

Relationship Between Design and Verification

Table 1. Recommendations of Standards

49

Definition of design goals: For example, definition of interfaces should be made in the specification phase: i.e.. integrate from the beginning.

Rules for design and verification: Specifications should be defined hierarchically, and rules (e.g.. those that accompany the control map)
should be followed with respect to how one level in the hierarchy relates to the function directly above it. These rules should include ways
of defining the invocation of a set of functions, input and output flow, input and output access rights, error detection and recovery. and

ordering.

Interfuce specification document: For every system a standard dictionary (or library) should exist that provides common meanings, ways of
saying things, ways of doing things, mechanisms for defining a system. system modules. and support tools and techniques. An evolving

dictionary is recommended that includes a set of
definitions of terms

tormally defined data types

formally defined control structures

system functions

User rm.u_um./: A user manual should be provided that contains checklists and explains (1) how users interpret the standards in the interface
specification document: (2) how designers design modules to add to the “library™ of the interface specification document: and (3) how
managers define new standards for system development that in turn can be converted, by the designers. to modules for incorporation into

the interface specification document.

User guide 1o implementation: 1f specifications contain certain consistent properties, one can take advantage of these properties by
understanding their consequences with respect to implementation. Given that there are standards for specifving. it would expedite the
implementation process if standards for specifying were defined to go from a specification to an implementation. The user guide should
include standards for (1) going from the specification (e.g.. a control map) to a computer allocation; (2) reallocating functions to a
computer. and (3) providing for reconfiguration of functions in real time.

Definition of development model: The definition of a development model is most helpful to the manager, who is responsible for integrating all
the phases of development. In addition to the above recommendations, the development model should define phases of development and
how to integrate them: disciplines (such as management, design. verification, implementation, and documentation): and an integrated
application ot tools and techniques that are to be used, and how and when they are to be used throughout the development process.

be used as a learning tool, for example, for those
people new to a project: a manager learning about
the work of the people in his project:; designers and
verifiers learning about each other’s modules in the
same project: implementers learning about the speci-
fication from which they are building; and users,
such as maintenance people, learning about the sys-
tem they are using or changing.

Acceleration of the Specification Process

In the process of constructing various specifications,
we found that the control map technique was quite
effective in expediting what are often considered to
be design processes. In those projects for which we
were given the task of defining an alternative module
to an existing specification, the existing specification
was, for all practical purposes, thought to be com-
plete. But it was necessary for us to design more ex-
plicitly function definitions, including data defini-
tions, as well as the integration of these functions. We
were able to determine, for example, types of design
trade-offs: design decisions with respect to interface
correctness (i.e., verification before the fact): com-
mon use of specification modules (data types, oper-
ations. and structures): more powerful and simpler
ways of conveying specifications; when each speci-
fication module was compfete; how to integrate mod-
ules safely:; common rules (or management standards)
of communication between modules; methods of de-

fining a system so that changes could be made safely:
and the effects of those changes traceable within the
design and during the design process.

Our findings were that these methods not only
supported a designer in providing designs more
quickly, but also helped to point out things that might
otherwise have been completely forgotten.

Verification and Validation Aid

Within our various efforts for which there was an
existing module with which to start. several errors
were discovered by the two-step process of formal
definition of (1) the data types that were used and (2)
the structure (or organization) of the existing mod-
ule. Because problematic areas were detected early,
later development phases were able to benefit: those
problems that had not been forestalled were not only
able to be detected sooner. but were also prevented
from surfacing later or propagating into worse
problems.

Establishment of Design Goals

In the process of understanding a module on an
existing project, especially a large or complex one. it
would always have been helpful if the specification
had been concerned more with the definition of the
relationships of specified functions (particularly at
the top level). The control map technique forced us

50

to consider integration of the functions in the system
from the very beginning. Such a design philosophy, if
applied, not only aids in understanding a design but
eliminates integration problems that would subse-
quently show up in later development stages. Thus,
if a specification were integrated, its implementation
would be able to be an evolvement rather than a
“redo,” as is usually the case, especially in the
development of a conventional system.

Enhancement of Existing Techniques

We found that it was possible to indicate certain
problem areas or demonstrate ways of making cer-
tain improvements to an ongoing project and do so
without impacting schedules or milestones if neces-
sary (it always was in our case). Those types of
improvement included enhanced methods of error
location, the actual discovery of errors, and off-line
methods for providing the engineer greater (or more
quickly obtained) visibility. (An automated graphics
tool would be an example of an add-on feature that
would not necessarily have to halt progress during a
system development.)

Management Visibility

In those projects in which we were asked to look at a
part of a system, we were able to determine a ‘‘feel”’
for the state or health of the specifications of the sys-
tem in general. For example, a better idea could be
formed of the types of interface problem that needed
to be resolved before a specification could be suc-
cessfully implemented. Those steps were determined
that would be necessary before a specification could
be called complete, and certain recommendations
were determined that were thought to be helpful in
providing a more reliable specification more effi-
ciently in the future.

The Need for Constructive Standardization

Put simply, the most urgent need on any large-sys-
tem development process is that of constructive
standardization. Some standardization, if it is effec-
tive, is certainly better than none at all; but if a
project is already in development, it is not usually
possible to apply an ideal and complete set of stan-
dards. However, it is possible to use incrementally
those standards that would enhance the development
process either by finding errors or by accelerating re-
maining phases of development. We did this on one
very large software effort with uncompromising
schedules. For example, we discovered that many in-

M. Hamilton and S. Zeldin

terface errors took place in the implementation phase
when programmers would use instructions in an un-
structured language, such as **“GOTO + 3.”" Errors
would creep in when someone would come along,
often the same programmer, and inadvertently insert
acard between the GOTO instruction and the location
at which it should have gone. Once we discovered the
amount of errors that resulted, we enforced by stan-
dardization the use of instructions such as *“GOTO
A’ rather than “*“GOTO + 3. As aresult, such errors
never happened again. The same sort of introduction
of standards could take place in any project. We have
found that it is too easy to want to hurry the design
process in order to meet deliverables. As a result, we
too often hesitate to introduce additional standards
into a system de velopment process. But hindsight and
recent experience, both of our own and of others,
have demonstrated that in the end it pays to organize
first and build later, especially when involved in the
development of large and complex systems.

SUMMARY

In order to change to new and standard techniques,
there is always the initial investment that is neces-
sary for defining and developing a model, or subsets
thereof for systems in general. We believe that a step
in this direction has already been accomplished.

Given AXES and the AXEs library as a first step, a
second step is to define a set of additional structures,
operations, and data types that are necessary for de-
fining a particular family of systems. Once the initial
investment has been made to establish what in es-
sence is a way of organizing the development of a sys-
tem with standards and mechanisms to accomplish
that organization, the payoffs should be quite appar-
ent. Design time during the requirements/specifica-
tions phase should be no greater than (in fact, we sus-
pect, much less than) with conventional techniques.
Implementation designs should take considerably less
time than with conventional practices since it is pos-
sible to perform such a process on an almost one-for-
one basis. We suspect that the largest savings will be
realized within the verification processes since most
of the recommended techniques provide standards
that should eliminate errors before the fact, and it is
Jjust these very types of error for which one spends so
much time looking today.

APPENDIX 1. Some Data Type Definitions

The following universal primitive operations are defined
for any type T and can be assumed to apply to each new
type definition:

Relationship Between Design and Verification

Booleun = Equals (1. 1,):
(1(. 1) = Clone, (1):

1, = Identify, (1, 1.);
= Identity (7, 7.);

The axioms that characterize these operations and there-
fore apply to any type are

where 1. 1., 1. 1 are Ts;
Equals (7. 1) = True: (N
Equals (1. 1) = Equals (£,. 1) (2)
Entails ((Equals (7,. 1,) And Equals (7,. 7).

Equals t/7,. 1)) = True: (3)
Equals (ldentify, (7. 7). 1) = True: 4)
Equals (Identify, (1,) g) = True: (5
Identity, (Clone, (+)) = (6)
Identifv, (Clone, (1) = (7

The first three axioms characterize “‘equality " as an equiv-
alence relation in terms of type Boolean, which was char-
acterized by Cushing [19 (Appendix 4)]. The fourth
property of equality. replaceability, is already fixed simul-
taneously with the introduction of a type T (e.g., this allows
us to use the **=""in each axiom definition), assuming that
equality can be defined for a particular type by defining a
particular equivalence relation [this must, of course, satisfy
axioms ([-3) on any typel on an already known type (one
that presupposes equality).

Axioms 14) and (5) characterize the ability to choose. or
identify. a particular object. Axioms (6) and (7) character-
ize the Clone, operation, which provides for the ability to
rename the same object.

We often make use of a special case of the Identify,
operation. which we call the K .. Operation. When the
first argument of Identify, is a constant. Identify, can be
viewed as an operation on one argument of type 7.

K eonsan (11 = Identify (constant. 1)

An alternative way of writing any K .o Operation in
AXES 1s simply to use the constant itself. For example.

v o= K07 isequivalentie Ty o 17

This alternative form appears often in the AXES definitions
throughout this paper.

Type Ordered Set {of T) makes possible the selection of
values from a set of objects in a particular order. The
property we want to characterize here is simply the ability
to distinguish which is first from “‘all the rest.”” Ordered
sets can be implemented as files, lists, or arrays. for
example

Data Type: Ordered Set (of T):
primitive operations:
= First(ordered set,):
ordered set, = Second(ordered set,):
Boolean = OEqualstordered set,. ordered set,):
axioms:
where 7/ isa 7,
(a. b)are Ordered Sets (of T),
Nullo is a constant Ordered Set (of 7).
FirsttNullo) = Reject:
Second(Nullo) = Reject:

OEqualsta, h) = Equals(First(«), Firstth)
And OEquals(Secondi«). Second(h)):

end Ordered Set (of T):

The first two axioms define the error conditions for an
Ordered Set (of 7), and the third axiom provides 4 concept
of equality for Ordered Sets (of 7). Ordered Set (of T) is a
parameterized type in that, in its use, *" 77" can be replaced
with the name of a particular type. In the Nuvpak specifica-
tion. for example. we used Ordered Set tof State (of 7)) as
a particular use of this type.

The algebra associated with State (ot 1), itselt’ a para-
meterized type, is a heterogeneous algebra in terms of
types Time and Boolean. Time was characterized in {26].

Having a specification for Time and Boolean. we can
now define State (of T) as follows:

Data Type: State (of T):
primitive operations:
time = Stime(state):
t = Correspondent(state):
state, = Ssucc{state,):
Boolean = Sequals(state, state,i:
axioms:
where (s,. 5,) are States (of 7.
time is a Time.
tisaTl:
Precedes?(Stime(s). Stime{Ssucc(s,) - Frue:
Fquals(Correspondent(s,). Correspnndcnl(.\))
FFalse C Stime(s,) # Stime(s,) = True:
Sequals(s,. s,) = Fquals(&t]me M) Stimef s, 1)
And Equals(Correspondent(s,), Corr cspondcm(xg)):
end State (of T

The first of these axioms characterizes the time depen-
dence of each State (of T). in terms of the previously
defined AXEs operation. Precedes?. Precedes? is an opera-
tion on two values of type time that produces a Boolean. It
provides the notion of being able to determine if one time
precedes another. The second axiom imposes a functional
relationship between time dependence and the particular ¢
of a State (of 7) in that two different states cannot be
associated with the same time. The third axiom character-
izes equality of a State (of T) in terms of its components. In
the Navpak example we used State (of Satellite) as a
particular State (of 7).

Satellite itself, then, must be defined as atype. The type
definition given for Satellite is more analogous to a data
structure definition than a behavioral definition in that it
only says that two Satellites are equal if their components
are equal and that there are four components of a Satellite
that will characterize the type. To make this type more
useful, the primitive operations specified (and perhaps a
few additional ones that would have to be defined) would
have to be related by means of the particular approxima-
tion to the equations of motion to be used for Navpak.

Data Type: Satellite:

primitive operations:
vector = Positiontsatellite):
vector = Velocity(satellite):

52

vector = Attitude(satellite):
matrix = Covariance(satellite);
Boolean = Stequals(satellite,, satellite,):
axioms:
where {5, 5,) are Satellites:
Stequals(s,. 55 = Equals(Positions{s), Position(sy))
And Equals(Velocity(s,), Velocity(s,))
And Equals(Attitude(s)}, Attitude(s,))
And Equals(Covariance(s,),
Covariance(s));
end Satellite;

Types Vector and Matrix are discussed in [32]. The same
sort of data structure definition is supplied for type Image
since the only characteristics we were able to abstract from
the information we had on hand at the time of this project
was that an image was an object that had a particular
intensity and associated location.

Data Type: Image:
primitive operations:
scalar = Intensity(image);
place = Location{image};
Boolean = Iequals{image,, image,):
axioms:
where i, i, are images;
1Equals(i,, i,) = Equals(Intensity(/,), Intensity(i,))
And Equals(Location(/,), Location(i,)):
end Image;

Type Scalar is defined in [32]. Type Place was defined as
part of a project now in progress for Defense Civil Pre-
paredness Agency {DCPA) [35], where it was necessary to
define a geographic coordinate system in order to distribute
food, fuel, and other resources to various regions within
the United States.

APPENDIX 2. Some Structure and Operation
Definitions

Specifications for the specific Navpak structures extract/fil-

ter, incorp, and the operations Find and Search appear in -

this appendix. More general AXES structure definitions,
which were used to define these specifications, are also
included.

The primitive control structures form the basis for de-
fining other control structures in AXEs. The use of AXES
syntax and associated rules for the primitive control struc-
tures follow:

For composition, if ¥ = f(x),
fory =filg) Jjoin g = fix);

(See Figure Al.)

1. One and only one offspring (specifically, f; in this exam-
ple) receives access rights to the input data x from f.

2. One and only one offspring (specifically, f; in this exam-
ple) has access rights to deliver the output data y for fi.

3. All other input and output data that will be produced by
offspring, controlled by f,,, will reside in locaf variables
(specifically, **g”" in this example). Local variable ¢’
provides communication between the offspring f, and f;.

M. Hamilton and S. Zeldin
y = fo(x)

join

y = f,(q) g=fikx

Figure A1l. Composition.

4. Every offspring is specified to be invoked once and only
once in each process of performing its parent’s corre-
sponding function.

5. Every local variable must exist both as an input variable
for one and only one function and as an output variable
for one and only one different function on the same
level.

For Class partition, if (¥, ¥2) = folxy Xk,
for ¥y = filxy}include vo = filx,)

{See Figure A2.)

1. All offspring of f, are granted permission to receive
input values taken from a partitioned variable in the set
of the parent’s corresponding function domain varia-
bles, such that each offspring’s set of input variables
collectively represents the parent’s corresponding func-
tion input variables.

2. All offspring of f, are granted permission to produce
output values for a partitioned variable in the set of the
parent's corresponding function range variables, such
that the sets of each offspring’s output variables collec-
tively represent the parent’s corresponding function
variables.

3. Each offspring is specified to be invoked per input value
received for each process of performing its parent’s
corresponding function.

4, There is no communication between offspring.

For set partition, if y = fi(x),

Sory = folx) ory = fy(x)

.
propetty Prot(property)”

(See Figure A3)

Figure A2. Class partition.

(yl :yz) = fo (xl ’Xz)

include

yp = fx) v, = £,{x))

Relationship Between Design and Verification

Yy = i‘o(x]

or

y = y =

fz"x)lproperty fl(x” Pnot (property)

Figure A3. Set partition.

{. Every offspring of the parent at f, is granted permission
to produce output values of " v.”

. All offspring of the parent at f, are granted permission
10 receive input values from the variable *“x.”

3. Only one offspring is specified to be invoked per input
value received for each process of performing its par-
ent’s corresponding function.

4. The values represented by the input variables of an
offspring’s function comprise a proper subset of the
domain of the function of the parent.

5. There is no communication between offspring.

-9

In the above definitions x, v, vy, ¥s. Xy, X, are ordered sets
of variables: f,. f,, f. are functions: property is of type
Property (of T) [19]: and Pnot is a primitive operation on
type property whose result is a property exclusive of its
input argument.

One structure, the each structure, is intended to be able
to perform the same operation on each member of an
ordered set of objects. Similar structures have been useful
on other projects, such as [33] and [28].
Structure: v = Each(x, b):

where v, v are Ordered Sets(of T),
. 0 is of some type;
Each: v = Nulloi or v = fdx, b)

Firsttri=Rejeet First(o i Rejeet

fio v = Combine{v,, v,) Join (v, ¥y) = filx, by

Jor Ay, o vay = fulag, by, da, by join (b, b,y = Cloneyh)

include (4, a,) = Cloney(x}:

include v, = Each{d¢”, ")
join «’ = First(a,)
include «" = Second(a,)
include %’ = Clone,(),)
include b" = Clone,(h,):

Jaryy o Fla'. b

syntax: ¥ = /([x}. h);
end Each:
The each structure has one unspecified operation F. First
and Second are primitive operations on type Ordered Set
(of T, defined in Appendix 1. Clone, is a primitive opera-
tion on any type and is also defined in Appendix 1. Com-
bine is a derived operation on type Ordered Set (of 7). the
specification of which follows:
Derived Operation: ¥ = Combineld, b):
where ¢ isaT,
(b, v) are Ordered Sets (of T);

First(Combine(u, h)) = a;

Second{Combine(a, b)) = h:
end Combine:

The each structure can be used to define the cojoin struc-
ture, which provides the ability to select components of an

53

input set of a function that serves as common input for
dependent subfunctions: similarly, the coinclude structure
provides the same ability for independent subfunctions.
and the coor structure provides the same capability for a
selection among subfunctions. In each ot the following
definitions, some type is an ordered set of variables. The
notation “id;,(x)" is an alternative form for the notation
“id(1 A1, x)77 used to indicate that the user of the structure
is to supply the value for A" as a constant, thereby
specifying particular id functions as mappmgs associated
with ~"x" only. An implicit specification of “¢™ or ©b"
occurs when the id function is “‘performed’ by simply
replacing “x,," or “x;,."" respectively, by a particular
subset of variables of " x"" in the use of this structure.

Structure: y = Cojoin{x):
where x, v. g, .Y, X550 V. Xy are of some type,
o, b are Ordered Sets (of Naturals):
Cojoin: ¥ = Alx;,.) join (x,. 0) = filx)
Fi e) = fulvg, vy join cxp. v,y = Clone,(y):
For Xy = 1dy 00 include ¢ = Bix;,)
Join v, = id,, (v,):
syntax: ¥ = A(Xy,. g} cojoin ¢ = Bly,,)
end Cojoin:

The specification of id, which is a derived operation on
Ordered Set (of 7) and Naturals, follows:

Derived Operation: 1 = id,(8);
where 11 is a Natural,
is an Ordered Set (of 7.
tisaTl:
id,(8) = id,,ﬂl(Second(Bl N or Firstt§|) or Reject
ned el Rl
end id:
Structure: {1, v,) = Coinclude(.):
where &, v\, Xy, ¥\, Vuo Xy Xy are of some type,
a, b are Ordered Sets (of Naturals):
Coinclude: (y,. v2) = filx,. X2} join (¥, X,) = Cloney(x):
Fooyvy = Alxg,y) join Ny = i glry)
include v, = Biy,}
Joim xp,p = id, (o)
syntax: ¥, = Ay, coineclude v, - Bly,,):
end Coinclude:

Structure: vy = Coor{x):
where x,, ¥, X, X, are of some type,
property is a Property (of T).
{a, b) are Ordered Sets (of Naturals):
Coor: v = _/'1(4\')1 or

fastreperty w="True

BN
Vo /.3(.\')‘ .
fhascproperts s sk akse |
Fov o= Alxy,) join Ny = i xh
Jor v o= Blagy join Ty = ik
syntax: v = ALy, coor
properiy
Vo 17'(‘\'”,‘)1

Pintepraperty?

end Coor;

Has is a primitive operation on type property [19] that
provides a notion of associating a particular property with
a value.

The failure structure. the definition of which follows,

54

provides for the ability to “‘recover’” from a ‘‘detected”
error. The definition uses the cojoin, coor, join, and each
structures.

Structure: v = Failure(x):
where (x, g, ¥, x,) are of some type,
a is an Ordered Set (of Naturals):
Failure: y = fi(x, g) cojoin g = E(x);
fi:y = Clone,(g) coor ¥ = fy(x)
gFReject g=Reject
fory = Flry join xyy = id,(x)
syntax: vy = E{x) failure v = Fx)
end Failure:

The operation definition for Clone,, which is also used to
define the failure structure, is defined in terms of the join
structure and primitive operations on any type.

Operation: 4’ = Clone (u);
where u,, u,, u, u’ are Ts;
Clone,: u' = Identify,(u,, u,) Join (u,, u;) = Clone,(u);
end Clone,:

An alternative way of writing the Clone, operation in AXES
is simply to omit writing the operation itself; e.g.,

“y = Clone{x)" is equivalent to 'y = x.”

This alternative form appears often in AXESs definitions
throughout this paper.

every is a structure that requires at least two members
of an Ordered Set (of T) as input and successively per-
forms the same operation on the result of the operation
performed on the first two members and the next member,
as in the sum of a set of naturals or the product of a set of
rationals.

Structure: v = Every{x):
where x, x,, X5, X5, g, ¥, X, are of some type;

Every:y = RejectI or ¥y = flxy, x4
re=Reject

)
rodlieiect
join(x,, x,) = S(xk

)

2y Reject

} coor ¥ = filxy, X3, X%
xg=Relert

}
foy = Flx,, l'gI

cojoin (x5, x3) = S(x,);
fiiy = Flxy, g) cojoin g = fy{x;, X5
syntax: y = f<x>;

end Every:

The every structure uses operation S, which produces the
first and second component of an Ordered Set, the specifi-
cation of which follows:

Operation: (x,, x) = Six);
where (x,, x,)are Ordered Sets (of T),
xsisaT:
S:x, = First(x) coinclude x, = Second(x);
end §;

The extract/filter structure, discussed in the main text of this
paper, is specified using structures (of which cojoin, coor,
and coinclude have been specified above and incorp is spec-
ified below), data types previously defined (see Appendix
1), and operations (of which Find and Search are specified
here and Lmkrgs is discussed in length in [32] and in sum-
mary in the main text of this paper).

M. Hamilton and S. Zeldin

Structure: v = Extract/Filter{x, s, m, ¢};
where x, y, x,, are States (of Satellites),
x, chip are Ordered Sets (of Images),
m is a place,
¢, ellipse, ellipse’, ellipse”
are Ordered Sets (of Ordered Sets (of Images)),
s is an Ordered Set (of Images),
P, Ds are Scalars;
is an Option;

Extract/Filter: y = fi(x, s, m, ¢ 3 coor
! mEReject |
¥ = Rejectl N
m=Reject
fiiy = filx,, s, m, c, ellipse) cojoin
{x,,, ellipse} = Lmkrgs(x, s, m);
Sy = Rejectl coor
ap=Reject
¥ = filx,, s, m, ¢, ellipse)i
Tp#Relect
[yt y = filx,,, 8, m, chip, ellipse) cojoin
chip = Find(m, ¢);
fq x" = Reject coor
chip=Reject

x' = fudxn, s, m, chip, ellipse)
. chip#Reject
fit ¥y = flxn, 8. m, chip, ellipse’, p)) cojoin

(p, ellipse’} = Search(chip, ellipse);

fs ¥ = Reject coor
pysl
y' = [terate{x,,, s, m, chip, ellipse’, p, IR
py=0
Iterate: y = N{x,,, s, m, chip, ellipse’, p,, &) cojoin
6= Ip,;
N: y = lterate(x,, 5, m, chip, ellipse’, pll) coor
g=Enter
¥ = R(x,, s, m, chip, ellipse’, pl’)
#=Proceed
coor

3
#=Terminate
R:y = W(x,, s, m, chip, ellipse”, p,, ps} cojoin

tellipse”, p,) = Search(chip, ellipse’):

W: y = lterate(x,,, s, m, chip, ellipse”, p;) coor

By~ =0

v = incorpgylx,,, 5. m, ellipse”

v = imcorpg(x,,, s, m, ellipse’

%

P TEdl

syntax: x* = extract/filter, ,(x, 5, m,)
end Extract/Fiiter;
Structure: x’ = Incorp(x, s, m, €);
where x, x', x; are States (of Satellites),
¢, ¢’ are Qrdered Sets (of Ordered Sets (of Images)),
8 is an Option,
m is a Place,
s is an Ordered Set (of Images):
Incorp: x' = filxy, e, ¢') cojoin
{(x,,) = Final{x, 5, m, e);

fir x' = Reject coor
TesK e.e7y=n , K
5" = Assure{x,, ¢, ¢') I
Testie, €'1>0
Assure: ¥’ = fylx,, ¢, ', 8) cojoin 6= Fle, ')
for x" = Assure(x,, e, e’) coor
f=Enter
x' = Update(x, e, ¢’)
B=Proceed
coor
x’ = Reject
#=Terminate

syntax: x’ = incorpp(x, 5. 11, €}:
end Incorp;

Relationship Between Design and Verification

incorp is a structure intended to incorporate a measurement
and update the estimated state of a satellite.

In incorp. Test is a scalar valued operation that checks
the quality assurance of the measurement based on pre-
determined criteria [32], and operation F is a user supplied
operation that may impose additional quality assurance
checks. F could be allocated to a human operator, for ex-
ample, whose “‘better judgment™ would be the additional
quality assurance function.

Operatien: Chip = Find(m, ¢):
where m is a place,
¢,. ¢ are Ordered Sets (of Ordered Sets (of Images)).
l,. ¢,. chip are Ordered Sets (of Images),
!, is an Image,
g is a place,
h. b’ are Booleans;
Find: chip = fi(m,, ¢y. ¢y) cojoin (¢q, ¢2) = S(c);
fi: chip = Reject coor chip = fa(m, ¢4, ¢
cy=Reject

fa:chip = fstm, ¢y, ¢5, b) cojoin b = Locate(m, cy);

):

¢ #Reject

fy:chip = ¢y coor chip = Find(m, c'z‘ IR
! b=True h=False
Locate: b = fi{m, [, l;) cojoin (/;, I;) = S(cq):
fai b = False coor b= fi(m, 1y, I, IR
i =Rejeet L ¥Reject
Jsi b = fstmo s, by cojoin b' = Equals(m, g)
cojoin ¢ = Location(/,):
fio b = True! coor b = Locate(m, [, IR
Phi=True b =False
end Find:

Find is an operation that **finds’" the set of images that con-
tains place m in a set of sets of images c.

Operation: (p. ¢') = Search(chip, ¢}:
where chip is an Ordered Set (of Images),
R. ¢, " are Ordered Sets (of Ordered Sets (of Images)).
p.p' are Scalars.
&, y are Ordered Sets (of Scalars):
Search: (p. ¢') = fi(chip, ¢)
Firstt er# Reject
coor p=0
coinclude ¢’ = ¢
Firstt er=Reject
Sfictpoe’ = fulchip. R, p')
cojoin (R, p') = fichip, ¢):
fur(p. e’y = Search(chip. R)

plE

coor p=p
coinclude ¢ = R
pI=0
far R = Second(¢) coinclude p’ = f(&,x)
join &= Intensity| First (¢)]

include x = Intensity[chip]:
Jip =gz - .

end Scarch:

Search is an operation that matches a preselected set of
images with 1 component of a set of sets of images when a
positive correction p is found. The each and every struc-
tures are used to define p. In the definition of Search, "X
is an alternative symbol for the sum operation on Scalars
and "+ s an alternative symbol for the product operation
on Scalars.

55

ACKNOWLEDGMENT

We would like to thank Barry Boehm of TRW for a most helpful
review of this paper.

REFERENCES

l. M. Hamilton and S. Zeldin, Integrated Software De-
velopment System/Higher Order Software Conceptual
Description, TR-3, Higher Order Software, Inc.. Cam-
bridge, Massachusetts, November 1976.

. M. Hamilton and S. Zeldin, Higher Order Software—
A Methodology for Defining Software, [EEE Trans. on
Software Engineering SE-2 (1), 9-32 (1976).

3. C. V. Ramamoorthy and H. H. So, Appendix to Re-
quirements Engineering Research Recommendations,
Software Requirements and Specifications: Status and
Perspectives (August 1977).

4. M. A. Jackson, Principles of Program Design, Aca-
demic Press, New York, 1975.

5. R. F. Bridge and E. W. Thompson, A Module Interface
Specification Language, Information Systems Re-
search Laboratory, University of Texas at Austin,
Technical Report No. 163, December, 1974,

6. J. E. Horowitz Guttag and D. Musser, The Design of
Data Structure Specifications. Proc. 2nd International
Conference on Software Engineering, October 1976,
pp. 414-420.

7. L. Robinson and R. C. Holt. Formal Specifications for
Solutions to Synchronization Problems, Computer Sci-
ence Group, Stanford Research Institute. 1975.

8. Computer Sciences Corporation. A Users Guide to the
Threads Management System, City. State, November
1973.

9. M. W. Alford, R-Nets: A Graph Model for Real-Time
Software Requirements, Proc. MRI Svmposium on
Computer Software Engineering. April 1976, pp. 97—
108.

10. C.G. Davisand C. R. Vick, The Software Development
System, Proc. 2nd International Conference on Soft-
ware Engineering. October 1976. Addendum pp. 27—
43,

11. Hughes Aircraft Company. 1975 IR&D Structured De-
sign Methodology, Vol. 11: Structured Design, FR 76-
17-289, Fullerton, California, 1975.

12. D. Teichroew and E. A. Hershey Iil. PSL/PSA: A
Computer-Aided Technique for Structured Documen-
tation and Analysis of Information Processing Systems,
IEEE Trans. on Software Enginecring SE-3 (1), 41-48
(1977).

13. IBM, HIPO: Design Aid and Documentation Tool. IBM
SR20-9413-0, Bethesda, Maryland. 1973.

14. D. Ross. Structured Analysis (SA): A Language for
Communicating Ideas, IEEE Trans. on Software En-
gineering SE-3 (1) 16-34 (1977).

15. M. L. Wilson, The Information Automat Approach to
Design and Implementation of Computer-Based Sys-
tems, Report IBM-FSD, IBM, Bethesda. Maryland,
June 1975.

16. M. Hamilton and S. Zeldin, Reliability in Terms of Pre-

9

56

17.

18.

21,

22.

23.

24,

25.

dictability, Proceedings, COMPSAC 78, Chicago, II-
linois, IEEE Computer Society Cat. No. 78CH1338-
3C, November, 1978.

M. Hamilton and S. Zeldin, The Manager as an Ab-
stract Systems Engineer, Digest of Papers, Fall
COMPCON 77, Washington, D.C., IEEE Computer
Society Cat. No. 77CH1258-3C, September 1977.

M. W. Cashman, An Interview with Prof. Edsger W.
Dijkstra, Datamation 23 (5), 164—-166 (1977).

. M. Hamilton and S. Zeldin, Axes Syntax Description,

TR-4, Higher Order Software, Inc., Cambridge, Mas-
sachusetts, December 1976,

. M. Hamilton and S. Zeldin, The Foundations of AXEs:

A Specification Language Based on Completeness of
Control, Doc. R-964, Charles Stark Draper Laboratory,
Inc., Cambridge, Massachusetts, March 1976.

J. Guttag, The Specification and Application to Pro-
gramming of Abstract Data Types, Univ. of Toronto
Technical Report CSRG-59, September 1975,

C. A.R. Hoare, An Axiomatic Approach to Computer
Programming, CACM 12, 576-580 (1969).

B. H. Liskov and S. N. Zilles, Specification Techniques
for Data Abstractions, IEEE Trans. on Software En-
gineering 1 (1), 7-9 (1975).

J. V. Guttag, E. Horowitz, and D. Musser, Some Ex-
tensions to Algebraic Specifications, in Proc. of an
ACM Conference on Language Design for Reliable
Software (D. B, Wortman, ed.), Raleigh, North Caro-
lina, Association for Computing Machinery, New
York, March 1977.

Z. Manna and R. Waldinger, The Logic of Computer
Programming, IEEE Trans. on Software Engineering
SE-4 (3) 199-229 (1978).

27.

28.

30.

31.

32.

33.

34.

35.

M. Hamilton and S. Zeldin

. Higher Order Software, Inc., Techniques for Operating

System Machines, TR-7, Cambridge, Massachusetts,
July 1977,

M. Hamilton, and S. Zeldin, Top-Down/Bottom~Up,
Structured Programming and Program Structuring,
Rev. 1. Doc. E-2728, Charles Stark Draper Laboratory,
Inc., December 1972.

D. Harel and R. Pankiewicz, The Universal Flow-
charter, TR-11, Higher Order Software, Inc., Cam-
bridge, Massachusetts, November 1977.

. J.Rood, T. To, and D. Harel, A Universal Flowcharter,

Proceedings of the NASA/AIAA Workshop on Tools

for Embedded Computer Systems Software, Hampton,

Virginia, November 7-8, 1978, pp. 41-44.

A. F. Fuchs, C. E. Velez, and C. C. Goad, Orbit and
Attitude State Recoveries from Landmark Data, The
Journal of Astronautical Sciences XXIII (4), 369-381
(1975).

Computer Sciences Corporation, Navpak Design for
Landsat and Kalman Filter Applications, CSC/TM-77/
6012, Arlington, Virginia, January 1977.

Higher Order Software, Inc., A Demonstration of AXES
for Navpak, TR-9, Cambridge, Massachusetts, Sep-
tember 1977.

Higher Order Software, Inc., The Application of HOS
to PLRS, TR-12, Cambridge, Massachusetts, Novem-
ber 1977.

S. Cushing, Geographically Distributed Systems in
Higher Order Software, DCPA Memo No. 7, Higher
Order Software, Inc., Cambridge, Massachusetts (in
preparation).

J. R. Searle, review of J. M. Sadock, Towards a Lin-
guistic Theory of Speech Acts, Language 52, 1976.

