
The Relationship Between Design and Verification 

The assumption is made here that a design process, in 
order to be effective, must include techniques that 
facilitate the effectiveness of the verification of the 
target design resulting from that process. The assump- 
tion is also made that these techniques can and should 
be universal in nature. That is, any system designer 
should be able to use these techniques to benefit his or 
her own design process and to check for the proper 
use of these techniques, both statically and automati- 
cally, with the aid of a common set of tools. 

Once a set of universal techniques has been verified, 
there is no longer a need to verify such techniques each 
time a new system is designed. It follows, then, that 
there is no longer a need to verify or prevent those 
categories of problems that are known to exist no 
longer, given the correct use of those system design 
techniques that eliminates that class of problems. 

Verification of a system design includes the identifi- 
cation of redundancies, logical incompleteness, and in- 
consistencies of a system definition, description, impfe- 
mentation, and execution. If a system design process 
Inherently produces a design that no longer requires 
certain types of “after the fact” verification, many as- 
pects previously associated with the verification process 
can be eliminated. We discuss our recent experiences 
in defining systems where we have attempted to show 
the relationship between design and verification. An ex- 
ample specification is used to demonstrate the proper- 
ties of a system definition whose design supports elim- 
ination of unnecessary verification, maximum use of 
static verification, and minimum use of dynamic 
verification. 

INTRODLJCTION 

A system development process is a system that de- 

velops another system. Such a system can be viewed 

as a process where each instance is continuously 

receiving requirements as inputs and producing spec- 

ifications as outputs. In such a development system. 

~e4~4i~~~~n~f~t.~ are those items that are desired OI 

needed and ~sp~~l~~~~i~{~~~.s are the results that realize 

those requirements: one engineer’s requirements 

could be another engineer’s specifications 1 I I. 
There are several disciplines, or combinations 

thereof. that can occur as a development process. 

These disciplines include design, implementation. 

verification, management, and documentation. All of 

these disciplines also take place throughout a system 

development process and. depending on point of 

view, one engineer’s design process could be viewed 

as another engineer’s management, implementation. 

verification, or documentation process. Each of 

these disciplines is just as interchangeable with re- 

spect to each other, depending entirely on a given 

point of view. 

A development process is viewed as a n~~~nagemenl 

A 

A 

process when it is considered with respect to its 

c~rrtt~l of other disciplines. 

development process is viewed as a ~loc.rl~rr/~tr/- 

Co/r process when it is considered with respect to 

its tir.wriptiotr of other disciplines. 

development process is viewed ax a cl~.s;g/r pro- 

cess when it is considered with respect to its 

~~~~~~~?i~~o~~ of other discipline\. 

A development process is viewed ;ts ;I I’O.SOIII’L’C tri/o- 

c,trfio/~ process if it is considered in terms of its 

i/lli)/l~llroltlrtioll of other disciplines. 

A development process is viewed as a ~~~r-ific’cifio~r 

process if it is viewed in terms of its r~.~~~tfic)~ of 

other disciplines. 

A successful execution of a target system is directly 

dependent on a successful execution of a develop- 

ment process. 
The design process is a focal point for all of the 

other disciplines. Not only doe\ it determine if a 
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system is going to work, but it also directly affects 
the effectiveness of the other disciplines. A design 
process, however, is not complete until the process 
itself or its results have been verified. It follows then 
that the verification process is a focal point for all the 
other disciplines as well. 

For each step of design, there should be a “coun- 
terstep” of verification. This does not mean that for 
every new thought in the design process it is neces- 
sary to have a one-to-one corresponding “thought- 
back” for the entire verification process; quite the 
contrary-not only would such a method be time 
consuming, but it would also not be reliable. At 
times, in fact, the process of design could be inter- 
preted as one and the same as the process of verifica- 
tion. This occurs when certain design characteristics 
are included for the purpose of preventing unneces- 
sary verification. In such a case, some types of verifi- 
cation requirement are designed out of the system. 
What is left is the second-order verification that guar- 
antees that unnecessary verification requirements 
with respect to design have been eliminated, and then 
a need to verify only that which is truly part of the 
original intent of the design. 

Many engineers desire to improve their own design 
techniques. These design techniques include tech- 
niques for producing the design for a solution to a par- 
ticular problem as well as the design for the process 
that will verify that solution. More often than not, 
these engineers appear to be talking about a different 
design process since they are involved in different 
types of systems or different phases of development 
within a given system. Actually, they are applying the 
same process (i.e., design) in different ways. In the 
context of a typical system development process, de- 
sign could be the process of developing concepts, re- 
quirements, specifications, code, or computers; like- 
wise, design could be the process of going from a 
concept to a set of requirements, from requirements 
to a set of specifications, horn specifications to a set 
of code, or from code to a set of computers. In each 
of these processes, a designer considers the task of 
preparing a design to reside eventually in a “ma- 
chine” environment (e.g., a computer for a software 
system). One of the problems in a design approach is 
that the designer either worries unnecessarily about 
design considerations irrelevant to his own process or 
bypasses certain design considerations under the 
impression that they have already been, or will later 
be, handled by someone else. 

A designer should be concerned with the design 
that is to reside in that designer’s development phase, 
and that design only. Each designer goes through the 
same generic process but should be applying that pro- 

cess to a different phase of the overall application. 
Thus the inputs and outputs of that design process 
should be both unique and self-contained. 

Other than a good deal of insight, a successful de- 
signer has necessary and sufficient knowledge about 
a particular problem, an understanding of the nature 
of a design process, an understanding of the nature of 
the reverse of a design process (the verification pro- 
cess), and a means to perform a set of effective 
implementations. 

The verification process exists for the purpose of 
finding errors in the output of a design process. There 
are those errors that can always be found by auto- 
mated means (provided that the design process in- 
corporates proper procedures) and those that cannot 
always be found by automated means. We divide the 
former into two kinds. The first is determined by ana- 
lyzing a system (or a set of subsystems) on a stand- 
alone basis. For example, if a specification has an in- 
consistency among its functions or if a computer pro- 
gram has a data conflict, such errors can be found by 
analyzing only the system in question. In this case, it 
is possible to design the system in such a way that 
checks can be made with respect to interface cor- 
rectness (i.e., logical completeness, consistency, and 
nonredundancy). The second kind is that which is 
determined by checking one development layer with 
the development layer from which it evolved. An ex- 
ample of such a comparison is that of checking a com- 
puter program against its specification. Again, checks 
can be made with respect to interface correctness be- 
tween layers. 

Errors that cannot always be found by automated 
means are those that are determined by checking a 
development layer against the intent of the original 
designer. A small percent of large-system develop- 
ment errors fall into this category 121. This problem 
is alleviated by providing both techniques that auto- 
matically eliminate other sources of errors and those 
that support the verification engineer in finding the 
remaining errors. 

An ordering for a verification process then be- 
comes apparent. One first concentrates on eliminat- 
ing certain types of verification by following design 
principles that make this possible. This is the con- 
ceptual phase of the verification process. Then one 
concentrates on using these principles correctly. A 
check for correct use of principles can be performed 
both statically and automatically. This is the static 
phase of the verification process. Finally, one con- 
centrates on verifying only that part of the design 
which is concerned solely with the performance of a 
particular algorithm. This is the dynamic phase of 
the verification process. 
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THE RATIONALE FOR USING A METHODOLOGY 

t\n effective methodoIogy can assist a designer with 
respect to both the design itself and its verification. 
There are concerns, however, on the part of some 
project managers with regard to introducing a new 
methodology into an organization especially when it 
affects an ongoing project. Often, unfortunately. 
methods are never improved because of insufficient 
time to introduce new methods when, in fact, part of 
the reason for not having enough time is the methods 
already being used. 

How does one convince project managers of the 
benefits of introducing a niethodology into their orga- 
nization (excluding success stories about competi- 
tors)? Project managers, whose first priority is to 
deliver items that work, and work on time, are in the 
majority and must have some proof that the introduc- 
tion of a lnethodolo~y will serve their needs better. 
We have found that an effective way to demonstrate 
;I methodology within a given project is to select a 
module within that project’s environment and to 
show the differences in de~nition of that module 
using the new methodology as opposed to the meth- 
ods already being used on that particular project. In- 
variably, the most significant results are those where 
the use of certain design techniques eliminates some 
traditional categories of errors. The power of new 
concepts is often realized when those errors are un- 
covered in anengineer’s own system,especially when 
that module is thought to be already working! 

Once a project manager sees that some method- 
ology can be more effective than none (i.e., no com- 
mon adopted methodology), aninterest develops with 
respect to other methodologies. Which one is best? 
How do we choose between one and another‘? It then 

becomes apparent that there should be a common set 
of criteria by which to compare methodoIogies. 

Some project managers are much harder to con- 
vince than others. with respect to using an effective 

methodology, because they are fortunate enough to 
have all “smart” people. It is true that the smartest 
person, by definition, would apply an effective meth- 
odology . c\n effective methodology, however. ap- 
plied in common by several smart people, would far 
exceed the advantages of each smart person applying 
techniques in an ad hoc manner, since all the intri- 
cacies of a complex system are by nature beyond the 
grasp of any human being. The designs of all smart 
people must still be integrated. Thus a manager can 
be much more effective by defining a standard means 
to integrate the methods of these people before the 
fact rather than after. 

Once a prqject manager decides to adopt a certain 

methodology, the immediate problem becomes how 
to implement it without impacting deliverable items 

of an ongoing project. In this case, a project manager 
can be assisted in using those aspects of the meth- 
odology that either make results more visible, find ot 

prevent errors, or do any ofthese more quickly. Once 
these incremental techniques are introduced, engi- 
neers start feeling more at home with those aspects 
of the methodology and are much more prepared to 
start using other aspects when the proper time comes 
(e.g., the start of a new project). 

Some progress has been made with respect to a 
particular project when the managers say “We are 
convinced, but how do we convince our engineers?” 
It often has been the case in such an en~,ironment that 
their engineers say “We are convinced. but how do 

we convince our management?” 
Finally. say, the engineers and their management 

are convinced of the practical advantages of using an 
effective methodology but become nostalgic for the 
old days, thinking that poorer methods left more 
room for creativity. It is true that an effective meth- 
odology provides more constraints for- the designers 
but nrll.~ in the area of preventing the production of 
errors.. As a result, creative designers should be Ic,c.\ 
constrained in producing better designs. Once the 
project manager recognizes this. selection of a meth- 
odology is imminent. 

DESIRABLE PROFERTI~S FOR A 
METHODOLOGY 

A methodology can support but never replace a de- 

signer. A tool can be developed to replace some oft he 
designer’s functions in general or even all of them fat 
a particular project; however. the de,,igner still has 
the prerogative to create new designs and design new 
uses for the same tool or new tools for different uses. 

Too often the same problems exist in the develop- 
ment of methodologies as do in the problems the 
methodologies are intended to address. That is, there 
are often i~lconsistellcies within a rn~thodoi~~~y. In 
addition, improvements to a methodology are often 
ad hoc, and modifications to a methodology to fix OI 
enhance it are made to already existing modifica- 
tions. Likewise, in the attempt to select an existing 
methodology. there is always a risk ot’comparing ( I I 
techniques addressing very different problems. (2) 
techniques intending to address ;I problem. but not 
effectively addressing it at all. (3) techniques with 
respect to nonexistent or ill-defined requirements, (4) 
the .“synt:tx” of methodologies inste;\d of the “se- 
mantics” of methodologies, (5) techniyues based on 
unf~lrnili~~r paradigms with preconceived notions. (61 
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techniques addressing the wrong problems or those 

that are “in the noise,” (7) techniques with respect to 
completion or amount of use rather than to the prob- 
lems they are solving, and (8) techniques with re- 
spect to the algorithms they are being used to define. 

There are many methodologies today whose in- 
tent is to provide standards and techniques to assist 
the engineer in the design and verification process 

[3]. The developers of these methodologies are all 
proponents of reliable designs, and most methodolo- 
gies advocate some similar techniques towards this 

aim. For example, it is commonly accepted that it is 
beneficial to produce a hierarchical breakdown of a 
given design in order to provide more manageable 
pieces with which to work. However, there are vari- 

ations among methodologies. Some emphasize a 
concentration of data flow as opposed to functional 
flow [4-71; others, just the opposite [g-lo], or both 

functional and data flow equally [ 111. Still others 
emphasize documentation standards [ 12,131, graphi- 
cal notation [ 141, or semantic representation [ 151. 

There are certainly positive aspects in many of 
these methodologies and, in particular, in what they 
are trying to obtain. However, to make comparisons 

among them or to determine the effectiveness of 
individual ones, it is necessary to determine the 
properties by which to make those comparisons. 

From our own experience in developing large sys- 
tems, we have determined a checklist of properties 
by which to analyze the techniques or the methodol- 

ogy being used by a particular project. We believe 
that these properties are necessary if a methodology 
is to be effective in the design and verification pro- 
cesses of a large system development. 

We make the assumption that a methodology should 
have techniques for defining systems that are con- 

sistent and logically complete: but these tech- 
niques are useful only if they are within them- 
selves consistent and logically complete, both 
with respect to each other and to the system to 
which they are being applied. 

methodology should have a standard set of defini- 
tions that resides in a well-publicized and evolving 
glossary. In our experience, we discovered that a 
mere change in the definitions of such terms as 
error and system could have far-reaching practi- 
cal implications on a large system development 
process 1161. 

methodology should have the mechanisms to de- 
fine all of the relationships that exist in a system 
environment [ 171. This includes communication 
within and among systems and the resource allo- 

A 
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cation’ that provides for such communication. 

Thus, not only must all data, data flow, functions, 
and functional flow be able to be defined explic- 
itly, but the relationships (and control of the rela- 
tionships) between data and data, function and 
function, and data and function must be able to be 
defined within any given system environment. 

methodology should have the mechanisms to de- 
fine all of the relationships that exist between 
possible viewpoints (or development layers) of a 
system. If, for example, one is concerned with a 
definition of a system, it is viewed with respect to 
what it is supposed to do. If one is concerned with 
a description of a system, it is viewed with respect 
to whether or not the definition is effectively con- 
veyed. If one is concerned with an implementa- 
tion of a system, it is viewed with respect to 
whether or not the system is constructed to do 
what it is supposed to do. If one is concerned with 
an execution of a system, it is viewed with respect 
to whether or not the system does what it is 
supposed to do. Whereas the description and im- 
plementation layers of a system represent static 
views, the definition and execution layers of a 
system represent dynamic views. 

methodology should have the mechanisms consis- 
tently and completely to define an object and its 
relationships ,fi~nrrll~. That is, every system in 
the environment of an object system (people, hard- 
ware, tools, software) should be able to understand 
a definition of an object and its relationships the 
same way. 

methodology should provide for modrrlnrity. That 
is, any change should be able to be made locally 
(with respect to levels and layers of development), 
and if a change is made, the result of that change 
should be able to be traced throughout both the 

system within which that change resides, through- 

_ 

‘Rcso~~c~ trlhcrtion is the process (or system) that prepares 
one system to communicate with another system. (Such a process 
is, of course, a communication process with respect to the re- 
source allocation of itself.) We define resource allocation in this 
way because of our finding that various engineers, including nu- 
merical analysts, programmers, hardware designers, and others, 
use “resource allocation” to mean very different things that reflect 
each of their specific interests. A definition was sought that de- 
scribed the process that focused on the fundamental feature of 
allocating resources, regardless of the characteristics of the spe- 
cific resource. By having a definition that is concerned with the 
gerrelal property of resource allocation. ad hoc formulations are 
not required. In addition, one can then ask some fundamental 
questions about the ways in which systems can be constructed. 
regardless of the specific project. We have sought other definitions 
as well with the same aim in mind, i.e., to uncover fundamentals 
on which systems can be designed, constructed. and verified. 
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out other systems within that system’s environ- 

ment. and throughout all evolutions of the devel- 

opmenl of that system. 

methodology should provide a set of ~~Yr?ziti~~~ 
\~rr/?~lrr,~l 177~~~I7~777is777.~ that are used both for defin- 
ing and verifying a system in the form of a 
hierarchy. 

methodology should provide for a library of an 
elYdl~il7~ set of more powerful (with respect to 
simplicity and abstraction) mechanisms based on 
the standard s,et of primitive mechanisms. Having 
an extensible library of mechanisms can serve as 
management standards as well as save a lot of 
time for everyone involved in a project. (Why 
should only one designer have Arabic numerals 
available to use in performing long division when 
all the rest are still trying to use Roman numerals 
[ 181”). 

methodology should allow system engineers to 
communicate in a language, with common seman- 
tic primitives and a ji7777ilirrr tlirrlect, that is exten- 
sible. flexible, and serves as a *‘library” of com- 
mon data and structure mechanisms. 

methodology should provide for a tir1~clopure77f 

777c~tlc,l, including a set of definitions, tools and 
techniyues. that supports a given system develop- 
ment process. 

Finally. not only must a methodology be effective. 
but it must also be able to be used as well, and the 
results of that use should be made available to 
other\. 

It is no coincidence that our own methodology has 
evolved with properties that correspond to those 
which c\e consider to be desirable ones for designing 
and verifying systems. since it was our direct experi- 
ence with large systems that yielded the basis of 

the methodology of Higher Order Software (HOS). 

SOME PROPERTIES OF HOS IN TERMS OF 
AXES 

~XFS. a specification language based on HOS, is a for- 
mal notation for writing definitions of systems. Al- 
though it is not a programming language, ,\SES is a 

r------l I -1 
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complete and well-defined language capable of being 
analyzed by a computer. \~ES 1191 pl-ovides mecha- 

nisms to define data types (in order to identify ob- 

jects), functions (in order to relate objects of types). 
and structures (in order to relate functions). .\XI s is 
the vehicle to define a system so that interface spec- 

ifications can be automatically checked statically. The 
foundations of -\XES are based on a bet of control ax- 
ioms derived from empirical data of large system5 121 
and on the assumption of the existence of a universal 
set of objects. Figure 1 illustrate\ the evolvement of 
the primitive .axts mechanisms from the control ax- 
ioms and the existence of the objects used to define 
systems. Each axiom describe\ a reLition of imme- 
diate domination with respect to a functional system. 
We call the union of these relations control. From 

these axioms a set of three primitive control struc- 
tures have been derived [N]. The primitive control 

structures identify control schemata on sets of ob- 
jects. From the assumption that we can identify an 
object or a set of objects, a mechanism for defining an 
algebra for each distinct set of object+, is provided in 
:\TI:s. Each algebra takes the form of ..I set of axioms 
that relate operations applied to objecls of a type. To 
form a system, new control structures are defined in 
terms of the primitive structures (Figure 2). or in 
terms of other nonprimitive control structures ( Figure 
3). Operations are defined implicitly by deriving them 
mathematically from the axioms on a type or explic- 
itly in terms of control structures using already de- 

fined operations on a type. When an cbperation is de- 
fined both implicitly and explicitly. the intent of the 
specification can be cross-checked for correctness. 

Once we have a library of control ktructures. data 
types, operations, and derived oper;ltions. we arc 
ready to form a particular .\~ts definition using thehe 
mechanisms (Figure 4): Figure 5. a graphical illu\tra- 
tion of an ,+.XES definition. demonstrates the integra- 
tion of the concepts illustrated in Figures l-4. Here 
the top node of the system is concerned only with the 
top-level function of defining all prcdii.table systems. 
M hcreas the second-level node\ :Ire concerned u ith 

Figure 1. Detine primiti\c \\I \ rnccharlism\. 
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empirical data, 
primitive control structures,’ 
primitive data type, 
universal derived operations, 
universal operations 

control structures, 
+ data types, 

operations, 
derived operations 

evolve mechanisms from primitives 

Figure 2. Evolve new AXES derived mechanisms from 
primitives. 

functions such as analyzing the empirical data to pro- 
duce axioms and objects. These axioms and objects 
in turn are used as input for deriving primitive control 
structures, a primitive data type, universal derived 
operations, and universal operations. These objects 

are then used as inputs for defining systems. The third 
level represents the decision “go” or “no go.” That 

is, if there are no empirical data left, all systems in the 
world are defined. If there are empirical data left, 
there are more systems in the world to define. The 
fourth level represents a recursive pass of “define 
systems” (on the second level) and the whole process 
of evolvement starts again. 

AXES systems are those systems that are defined 
directly with AXES or with mechanisms defined with 
AXES. AXES was designed to have a capability for de- 
fining both the relationships within a given system 
environment and between development layers of that 
system’s development process. 

Since AXES systems are HOS based and HOS is 
based on a consistent set of rules or axioms, all AXES 
systems have a ,forma/ set of properties. HOS em- 
phasizes completeness of control, where control is 
defined by axioms that establish the relationships for 
invocation of functions, input and output, input ac- 
cess rights, output access rights, error detection and 
recovery, and ordering of functions. Control affects 

Figure 3. Evolve new AXES derived mechanisms from 
existing AXES mechanisms. 

create control map 

an object, the relationships of an object, and the re- 
lationships of the development of an object. Everyone 
defining a module using AXES must follow the same 
rules in constructing the structure of that module. For 
example, not only is every object in a system con- 
trolled, but every object has a unique controller. The 
intent is to eliminate ambiguity in understanding 
either the behavior of an object or the behavior of that 
object’s relationships. 

There are many aspects of n?od~lar-ity inherent in 
AXES systems. For example, the definition of the be- 
havior of an object is completely separated from the 
definition that uses the object; the definition of a de- 
velopment layer is independent from those layers that 
evolve from it (for example, the specification of a sys- 
tem is independent of its implementation); and AXES 

provides a way of defining control mechanisms that 

are functional, as opposed to procedural. (The defi- 
nition of a control mechanism specifies total ordering 
among functions, which implies that the description 
of that definition is order independent. This does not 
rule out the possibility, however, of describing a pro- 
cedural process as a functional mechanism.) 

AXES systems also display other distinctive prop- 
erties of modularity: 

Both the mechanisms defined with AXES and the 
systems defined with these mechanisms behave 
as if they are “instructions”; e.g., a given control 
structure has no knowledge about a higher-level 
control structure. 

Control, or the chain of command, can be traced di- 
rectly on a control map. As a result function flow 
(including both input and output) can be traced di- 

empirical data, 
control structures, 
data types, 
operations, 
derived operations 

control structures, 
* data types, 

operations, 
derived operations 

REVISION N REVISION N+l 

evolve mechanisms from mechanisms create control map 
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,--&members of a data tyx 

/,, operation 

rectly. Changes can be traced and changes can be 

made locally. 

The single-reference, single-assignment property of 
;\YFS systems provides for an interesting set of re- 

source allocation alternatives. 

An \XI:S definition can be viewed as a specification 
that can be directly implemented in terms of a dis- 

tributed processing environment. Other types of 
implementations (e.g.. multiprogramming and se- 
quential processing) are special cases of a distrib- 
uted processing environment. 

We have found, however, that other aspects of afunc- 
tional specification should be treated as an integrated 

'primitive operation or 

previously defined operation 

or structure 

Figure 4. Bird’+eye \,iew ofcontrc~l map constructed from 

;\\t:\ library. 

whole and tlof artificially separated for the sake ot 
modularity: for such a separation ha:, often resulted 
in enhancing the errors in a system. That is, at any 
node in an AXES hierarchy a user is able to identify an 
object with respect to an integrated set of rr.\/x~c’~.r (!/’ 
c~)/~t~ol that inherently incorporates types of defini- 
tional ~17otlcl.s and l.ir~t,p~i~r\ of thwx models. 

systems = Define Predictable systems(empirica1 data) 

system = Define Systems 

empirical data = + empi;ical data # # 

\ 

systems = Fweze Library(A) systems = aefine Particular system(A) 

data) 
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With respect to aspects of control, the input-out- 
put behavior of a system is not treated apart from 
other aspects, such as ordering (which includes prior- 
ity, degree of concurrency, and synchronization) and 
error handling (which includes detection and recov- 
ery). With respect to models, every node of an AXES 

hierarchy represents a controller (the definition of 
which, in terms of structures, is a user model) that 
relates functions (the definitions of which, in terms of 
operations, are a functional model). Those functions 
in turn relate input to output (the de~nitio~s of which, 
in terms of data types, are an informational model). 

Furthermore, every node on an AXES hierarchy is 
expressed in terms of its viewpoints (i.e., definition, 
description, implementation, and execution). 
Whereas each node as an object is drfirzrd in terms 
of AXES statements, the descriptiotz of each node ex- 
ists in the form of the “pencil marks” of AXES state- 
ments. The itnplemenrnrion of an AXES object is per- 
formed by using the description of that object as an 
input in determining an equivalent form of ~fe~ff~ti~tz 
of that object for purposes of residing on a particular 
machine environment. An exe~~~j~~t7 of an object oc- 
curs when that object is assigned to a name. (in AXES 
an execution for a particular system begins once an 
object is assigned to one of its names. A system has 
completely been executed once objects have been 
assigned to all of its names. Theoretically, then, one 
could describe, implement, and execute a system by 
the very fact that its definition exists!) 

The fact that aspects of control, types of models, 
and viewpoints are inherently integrated with respect 
to each other at a given node significantly simplifies 
any given system definition. Fu~hermor~, each user 
in a development process of an AXES system is abie 
to relate to every node in a unique way (the manager 
with respect to control, the designer with respect to 
definition, etc.). 

With AXES, any system can be defined in terms of 
a set of stcrndcrrd primitives. The primitive control 
structures provide rules for the definition of depen- 
dent functions (e.g., sequential processing), inde- 
pendent functions (e.g., parallel processing), and 
selection of functions {e.g., recon~guration). 
Combinations of primitives form more abstract con- 
trol structures. It is also possible to tell when a design 
has been completed since a complete design is one 
that has been hierarchically decomposed until all ter- 
minal nodes of a control structure represent primitive 
operations or previously defined structures and op- 
erations. Since AXES has a common set of specifica- 
tion primitives (i.e., a common specification “ma- 
chine”), we envision common tools, such as an 
analyzer to check for correct interfaces and a re- 

source allocation tool to prepare a specification for a 
particular machine environment [ 11. 

Although a system can be defined directly with 
AXES, a more powerful use of AXES can be made by 
defining systems that are themselves a set of cjl.ol~- 
itq tneclzmi.stn~s for defining systems. Thus a set of 
specification “macros” can collectively form a “‘ian- 
guage” (or management standards) for defining a 
particular system or family of systems. It is envi- 
sioned that each new system user is able either to use 
a subset of already defined statements in an AXES 
based library or to add new statements since the 
AXES language system provides for extensibility with 
respect to both structure and data definitions. 

AXES provides a user with the capability of using 
_hnili~w Lfialects for a control structure or data type. 
Thus, for example, a manufacturing project might 
have its own set of specification statements to use as 
a means of standardization, as might an avionics 
project; but both should be able to intercommunicate 
since these structures are based on standard primi- 
tive mechanisms to which they can both relate. 

AXES is intended to provide the mechanisms to 
define both a de~~~~l~~~tn~tlf modef and the manage- 
ment of a system development model, which uses 
that development model, as systems, since that is, 
after all, what they both are. Within the context of a 
complete development process, a means is provided 
to define management standards, definitions, mile- 
stones, disciplines, phases, tools and techniques, and 
the relationships among all the various components 
within a development process. A first step in this 
direction can be found in [ 1,171. 

SOME PRELIMINARIES ON AXES 

AXES uses the functional notation 

!’ = .fs,, (1) 

where x is the input, _Y is the output, and ,f’ is the 
operation applied to Y to produce _Y. 

In attempting to define a system as a function, we 
assert that for every value of “x”” we expect to pro- 
duce one and only one value for “y.” That is, we ex- 
pect the system to produce predictably the same re- 
sult each time we apply ,f‘to a particular value. 

Now, we must incorporate into our definition a 
means to identify all of the acceptable inputs and 
outputs. In AXES, each input and output value is 

‘To differentiate an object from its name, the “use-mention 
distinction” is used throughout this paper [351. That is, to form the 
name of a given name (or written symbol of any kind) we include 
that name (or symbol) in quotation marks. 
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associated with a particular set of values, called a 
clrrtrr !,I‘/Q . The syntax for each algebra, or data type 
definition. is similar to that used by Guttag [21]. but 
the semantics as8sociated with each algebra is similar 
to the concepts described by Hoare [ 221. The seman- 
tics of our algebras assumes the r.ri.stcrrcc~ of objects 
(see Appendix 1). That is. when we define a system, 
as in t I ). we assume the values .I- and .v to exist and 
that when ,f’ is applied to .Y. )’ corresponds to the 

valutz .i. 

In many systems. especially large ones, it is often 
not readily apparent which input values correspond 
to the 5ystem.s intended function until the system is 
decomposed into smaller pieces. Although we start 
with a large set of “seemingly” acceptable values. a 

predictive system must be able to identify “truly” 
acceptable inputs or to produce an indication that a 
particular function will not be able to perform its 

intencled function. To identify a system’s intended 
function, we make use of a distinguished value, 
which we call Reject iFigure 6). This distinguished 
value is a member of every data type. If an input 
value corresponds to the value Reject as an output. 
then the function applied to that input is said to have 
detected an error. A function applied tc9 an input 
value of which Reject is a component [e.g., the value 
cl,?. Reject)] may either assign Reject as an outpui 
value. 01 “recover” from the error by assigning an 
output value other then Reject. 

Once we have identified all acceptable inputs and 
outputs of our ‘,ystem, we need a means to describe 
the relationship between the input and output, some- 
times called the performance of the function. Kela-. 
tions on Li set of operations give rise to a hierarchical 

structure. like the structure appearing in Figure 7. At 
each node in our hierarchy we shall put a functioI1~ 
with the intent that at any level of our hierarchy (a 
level i\ a set of immediate dominated nodes with 
respect to a particular node, sometimes called a step 

of refinement). we can relate the functions at that 

level to the function at the node immediately domi- 

nating them. 

We need a set of rules to determine a level, and ;I 
set of rules to determine whether we want to create a 
level. To determine a level, we want all the functions 
at the nodes of a level to be necessary and sufficient 
for the replacement of the function at the node di- 
rectly controlling these functions (Figure 8). Thiy will 
ensure that we get no more or no les<; than we want. 

i.e., that our level is logically complete. 
As we continue to build our hierarchy, each level 

completely replacing the function :rt the node di- 

rectly above it. we must be able to detine each point 

at which we want to htop. We stop s-hen WC reach ;I 

function whose behavior. i.e.. its input and output 
relation, has been defined in term4 of other opera- 

tions on a defined type. and our specification is 

complete when we determine each stopping point. 
Now, if we know the behavior of each function at a 

bottom level and how it relates to the other functions 

at that same level. we know the behavior of the node 
directly above it. With the same reasoning. u:e know 

the behavior of the functions at each level succes- 

sively closer to the root. or top node: similarly. we 

end up knowing the behavior of the root function 
itself.. Thus the behavior of the top node i\ ultimately 

determined by the behavior of the 4lective xet 01 

bottom nodes (Figure 9). 

Now we also want to assure logical consistency 
for a level. Since our intent. in the end. is to under- 

stand the behavior of the function at the top node. 

every time we talk about a value of l-hat function WC 

want to assure ourselves that we al-e talking about 

the same value at the level directly dominated by that 

function: that is, we wanI to be able to determine 

which values match up with which functions. To talk 

about a value we u5e its name. or variable. We want 

function 
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Figure 7. Hier~chical system structure. 

to be consistent about input variables (Figure 10) and 
output variables (Figure 11). To avoid specification 
errors in n~ing values, a particular name is always 
associated with the same value as we travel down the 
hierarchy. 

We also want to be able to determine which func- 
tions are more important than others. For example, a 
function is always more important than the functions 
at the level dominated by that function, and at a 
p~icul~ fevel each function is assigned an impor- 
tance with respect to each other function at that level 
(Figure 12). Among other things, we can use this 
information to implement specific timing relation- 
ships, both relative and absolute, without conflict. 

The above concepts, defined in terms of axioms 
121, are inherent in every AXES defined mechanism. 
Now let us see what all this means if we try to specify 
a particular function. For the purpose of demonstra- 
tion we select the function that is to produce the 
greatest common divisor (GCD) of two natural 
numbers. 

Figure 8. Level completeness. 

ace 

Figure 9. Endpoint completeness. 

To define GCD implicitly, we have the following 
AXES definition 119, Appendix IV]. 

Derived Operation: II:~ = GCD( n I, ~2~); 
where n I, n,, n:,, n are Naturals; 

Factor (GCD(rr I, n,), YI J = True; (2) 
Factor (GCD(rt,, tra), nJ = True; (3) 
Entails (And(And( Factor(n, B J, Factotfrr, nZ)), 

Not(‘?E~~al’?(~. Zerof)), Factorfrz, GCD(t? 1q n,))) 
= True: (4) 

end GCD; 

Each operation in terms of which GCD is defined is 
checked to determine if it has been previously de- 
fined. Each defined operation must eventually be 
able to be traced to a definition of a primitive opera- 
tion on a defined type (Figure 13). This could be 
performed autolnatically. Here, GCD is defined in 
terms of Factor, an operation on two naturals that 

Figure 10. Tracing input names. 
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Y = f(x) 

Figure 11. Tracing output names 

produces a Boolean, which tells us when one natural 

is a factor of another: Entails, an operation on two 
Booleans that produces a Boolean, provides a notion 
of entailment: And, an operation on two Boolean:) 
that produces a Boolean, and Not, an operation on a 
Boolean that produces a Boolean, have the usual 
logical meaning on Booleans; and ?Equal‘?, which is 
a primitive operation on two naturals. provides US 
with ;I notion of equality for naturals. 

Each statement about GCD in the derived opera- 
tion definition is an assertion about GCD. The set of 

statements about GCD must itself be shown to be 
consistent with the axioms of the type natural from 
which it is derived. The proof that WD is consistent 
with these axioms is performed mantlally. 

The technique of detining derived operations in 
AXES was introduced to limit the complexity of defin- 
ing a type. The idea here k to detine a t\pe with the 
/rust number of axioms required to characterke the 
behavior of the objects of ;I type: then we can build 

Naturals) 

r- --. , = Derived 

'..__..*' Operation 

El = Operation 

C> 
_ Primitive 

Operation 

(on Naturals) (on any type) 
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on our basic definitions and simplify our task of 
proving the consistency of a set of axioms. In a 
sense, we wind up building a hierarchy of axioms. 
Without a concept of derived operations we would 
either have to limit the number of operations allowa- 

ble on a type, as suggested in languages like CLU 

[23], which might make a large system specification 
quite cumbersome to understand, or add a few more 
axioms to our type definition each time we intro- 
duced a new operation, as suggested by Guttag [24], 
thereby imposing on ourselves the task of proving 
the consistency of possibly hundreds of axioms in a 

large system environment. 

Operation: y = GCD(x,,, y,,); 
where (x,,, yO, y) are Naturals, 

(,u,, y,) are Naturals: 

GCD: y = A(x,, yo) or 
S#O Or v+o 

y = Reject 
s,=o And !J=o 

A: y = y. coor 
.q,=o 

y = B(x,, yo) ; 
S,#O 

13: Y = A(x,, Y,) join 

(x-,, y,) = C(X”, Jo): 

c: (XI, VI) = D(xo, yo) or 
YCJCizg 

D: x1 = x,, 

(x,, y,) = Xch(x,, YJ 
!J"<.C" 

coinclude 

end GCD: 
Yl = Yo - x0; 

The explicit algorithm shown in the operation above, 
introduced by Manna and Waldinger [25], is defined 
here in terms of structures that relate operations. 
Whereas a structure is a relation on a set of map- 

pings, i.e., a set of tuples whose members are sets of 
ordered pairs, an operation is a set of mappings that 
stand in a particular relation. An operation results, 
mathematically, from taking particular mappings as 
the arguments (nodes) of a structure. By a finction, 

we mean a set of mappings that stand in a particular 
relation for which particular variables have been 
chosen to represent their inputs and outputs. 
Whereas structures and operations can be described 
as purely mathematical constructs, a function is a 
hybrid consisting of a mathematical construct and a 
linguistic construct, i.e., an assignment of particular 
names of inputs and outputs. Note that our use of the 
term “function” is slightly different from that in 
mathematics. 

In the operation definition for GCD, a hierarchy of 
functions is obtained (Figure 14) by using defined 
structures and “plugging in” particular operations 

and particular variables to represent the inputs and 
outputs. With respect to the GCD definition, A, B, 

Clone,, C, D, Xch, KReject, and Ndiff are functions. 
With respect to GCD as an object to be used, GCD is 
an operation because a user can supply his own 

particular input and output variables to use GCD as a 
function for another system definition. [Note that the 
alternative forms for Clone, and KHeject are used in 
the corresponding AXES statements (see Appendix 2) 
and an alternative infix form for Ndiff using the 
symbol “-” for “Ndiff” is used in the AXES descrip- 
tion.] 

The particular structures used in the GCD opera- 
tion definition are or, coor, join, and coinclude. The 
definitions for these structures can be found in Ap- 
pendix 2. or and join are two of the three primitive 
Structures. The third primitive structure, which was 
not used for GCD, is include, the definition of which 
also appears in Appendix 2. 

All of the nonprimitive structures used to define 
GCD explicitly are defined in terms of the primitive 
structures. For example, in Figure 15 the coor struc- 

ture is built from the join, or, and each structures. 
The first level of decomposition for GCD is defined in 
terms of the primitive or structure. In this case the or 
is being used to define the relationship among GCD, 

A, and KKeject 
In using the set partition control structure (or 

AXES "Or" statement) for the relationship among 

GCD, A, and KReject, we can check that the input and 

output to GCD is the same as the input and output to 
both A and KReject. In this case, A and KReject are 
partial functions of GCD. The control schema for set 
partition assumes the existence of data type Property 
(of T> (see [19]), where T is a type. A property is 

something that maps other things onto truth values. 
In Figure 14, where or is used for GCD, A and KReject 

“x0 f 0 Or y0 + 0” is a particular property on 
naturals and “x0 = 0 And y0 = 0” is another particular 
property on naturals. For a set partition, the two prop- 
erties are mutually exclusive, but one or the other 
must apply for any value of the input set of a function 
at the node controlling a level. 

To decide whether to decompose functions KReject 

and A, we determine whether either function has 
already been defined. Since KF<eject is an already 
defined operation on any type (it produces a Reject 
value for any input; see Appendix 2), we know we 
need not decompose it. A, on the other hand, has not 
been defined elsewhere, so we proceed to decom- 
pose it. The level of decomposition for A is defined 
in terms of the nonprimitive coor structure. 

Only B must be decomposed as we proceed down 
the hierarchy associated with GCD because Clone, is 
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y = GCD(X~,Y~) 

41 

,/,,---A y = *(xO,y”) lx0 f 0 or y" # 0 y = Krelect (xo,y”) 1 x = 0 And 

,//y y:=o 
Y = Clonel(YolIXo = 0 

Figure 14. A control map equivalent to the 
.,\xI,s ytaiementa for the GCD operation. 

(X1'YI) = O(Xo,Y,,)ly 
0 1 xo 

ix,,y,i = Qhb,,,y 1 
0 IYo x x,, 

/’ 

/ ’ co, nclude 
/ \ 

/ \ 

Yl 
= Ndiff(yo,xo) 

x1 
= ldentlfy~IXII’Y,,I il = IdentlfY,Do.Y,,) 

a defined operation on any type (it provides a notion, 
of corresponding the same value; see Appendix 2). B 
is related to A and C by means of an AXES “join” 
statement. 

In using the composition control structure (or 
ASES “join” statement) in defining the relationship 
among functions B, A, and C, we can check the fol-- 
lowing: the input to B must appear as input to C: the 
output of C must appear as input to A: and A must 
produce the output for B. 

In the operation definition of GCD, note that re- 

cursive functions are formed by combining control 
structures (see “A” in Figure 14). In this case, the 
total hierarchy is formed dynamically, where each 
occurrence of “A .’ requires a different input value. 
Although we statically check to assure that there is 
.YO~~I(J input value that will produce an output, proof 
that the chosen algorithm will find that input cannot 

alway\ be checked. A good discussion ofthis problem 
can be found in I 751. If an operation has a correspond- 
ing derived operation definition, we can use this in- 
formation to help prove the possibility of termination. 

We continue to decompose each function at each 
level until we reach the point at which a previously 

defined operation or structure appears. In the GCD 
case. we check Clone,. Ndiff, Kiit,jt.rt, and Xch. Ndiff 
has already been mentioned as an operation on natu- 
rals. Xch is an operation that exchanges the ordering 
of an input. Although previously defined [26] in 
terms of operations Identify, and Identify, (whose 
definitions appear in Appendix 2). we show the Xch 

definition in Figure 14 (with dotted lines for informa- 
tion purposes only). A previously defined operation 
need not be decomposed each time it is used. 

The technique of defining structures in /\SES was 

introduced to limit the complexity of interface defini- 

tions among systems. Interface correctness can be 
checked statically by comparing the use of ;I ytruc- 
ture to its definition. 

We can extract certain computational properties 

from the GCD operation definition and use these 
properties to implement our specification in a pro- 
gramming language. A representative implementation 
is shown in Figure 16 graphically in terms of an HOS 
structured design diagram [271. which is now auto- 
mated as a Universal Flowcharter [ 1!8.191. We shall 
make the same assumptions as Mann.\ and Waldinget 

Figure 15. Tracing definition\ of \rrnctnrc to three primi- 
tive control Qructnre\. 
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do; that is, the programming language used has inte- 
ger types, but not naturals. 

Although the restriction to naturals is asserted in 
[ 2.51, we explicitly include area 3 of Figure 16 to avoid 
misuse (an often occurring event during development 
of large programs). We check our input to GCD (Fig- 
ure 14) with our input to Program B by area 1 and our 
output by area 4. If x0 and y, both have the value of 
“0,” then there is no greatest common divisor. In this 
case, we have implemented the specified KHeject func- 
tion of Figure 14 as an error message (area 3). Again, 
leaving area 6 as an assertion in the form only of a 
comment could cause an interface problem. 

Note that each time the recursive function A of 
Figure 14 is to be invoked, the specification indicates 
that the initial values are no longer needed once the 
next invocation of “A” is to be executed. We make 
use of this fact in Program B by allocating the tempo- 
rary variables “,Y” and “4”’ for each new value. 
Areas 7- 10 of Program B implement function A from 
our specification of Figure 14. 

There are basic assumptions implied in this imple- 
mentation that may not be correct assumptions for 
all applications: (1) The expression “(x, y) t (y, x)” 
implements the Xch operation. An example of misin- 
terpretation of this expression would be a compiler 
which would first store the initial value of “.Y” and 
“x” and then take the nebv value of “x” and store 
that in ’ ‘y. ” (2) Single statement restart capability is 

Figure 16. Graphic description of GCD implementation. 
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either not required or, if required, is an inherent 
compiler capability. This type of ultrareliability is 
often required, for example, in aerospace real-time 
applications. Suppose the expression “(x, J) t (JJ, 
x)” were executed and a restart occurred before the 
program counter advanced to the next statement. 
Without restart protection, area 10 would be exe- 
cuted over again with the neM> value of “~1” and “s” 
and could, under some conditions, give the incorrect 

results. These two assumptions would have to be 
validated as “interface” correct for our particular 
application. If another implementation is desired for 
special applications, we start with the san~e specifi- 
cation (of Figure 14) and use the computational prop- 
erties of that specification to derive a new 
implementation. 

We have found that the same design techniques 
that are used to design a layer, where that design 

process supports the verification for errors within 
that layer, can serve the dual purpose of supporting 
the design and verification processes between devel- 
opment layers (e.g., between specification and the 
implementation of that specification). 

It is in such a process, that of going from one layer 
to another. that we are made more aware of the 
significance of the separation of the “what” from the 
“how.” For not only is it the case that the conven- 
tional specification process today is more complex 
than it need be because it confuses the specification 
with implementation considerations, but it is also the 
case that the conventional implementation process is 
more complex than it need be because its specifica- 

(1) 

r Print “undefined” 1 (6) 
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tion is confused -with implementation considerations 
(and. more often than not, considerations that are un- 

realistic, incompatible with a particular implementa- 
tion environment, unfeasible, or technologically out 
of date) or because some specification information is 
completely missing. 

Since an AXES control hierarchy includes all of the 

information about the objects and the relationships 
of those objects in a given system, if we wanted to 
implement a specification in terms of, for example, a 
software program (such as the GCD one), we could 
make use of such a specification on a one-to-one 
basis with any of its possible implementations. 

For any implementation, any function on a control 
map could be implemented as a procedure, a pro- 
cess, or as a set of in-line statements within a proce- 
dure or process. One implementation of a given 
specification could be multiprogrammed. another 
multiprocessed, and still another sequential. Values, 

variables, and data types can be directly translated 
into programming language representations of these 
objects. 

The definition of operations on data types pro- 

vides not only the set of operations that are allowable 
in an implementation, but also serves as a basis for 
checking correctness of intent. If, however, an oper- 

ation is implemented as a subroutine, decisions af- 
fecting data transfer, such as “CALL by name” or 
"CAI.I. by value,” could vary from implementation 

to implementation. 
The layer and level relationships with respect to 

communication ;and resource allocation can be used 

in the assignment of input and output access rights, 
data flow. functions that are to be invoked, error de- 
tection and recovery procedures, and order of exe- 
cution of implemented modules. 

The data flow can be traced directly on the control 
map in terms of access rights assignments (i.e., input 

can be traced down and output can be traced up the 
control map), which suggests, of course. that the 
access rights themselves can be readily determined 
for any given implementation. For example, with re- 

spect to scope, ;~1 variable only needs to be declared 
at the level where it first appears. That same variable 
“local” to the level of the controller above it can also 
be implemented as such. 

It is not possible with the use of conventional 
computers always to maintain a single-assignment, 
single-reference status when going from a specifica- 
tion to an implementation. but it is possible to re- 
source-allocate more efficiently an implementation 
when its specification is defined with single-assign- 
ment, \ingle-reference properties. This is true since 
the status of any “location” is tr/\~~cl~s known. Thus, 

a reuse or a sharing of a particular location can not 

only be determined, but a location can always be 

shared when it is safe to do so. 
Since every node on the control map explicitly 

states all input and output variables, it is possible for 
an implementation to be set up to implement alter- 
native plans in the case of a failure. 

Priorities can be determined readily for a particu- 
lar implementation since there are some very specific 
rules to be followed. (For example, a controller al- 
ways has a higher priority than the functions it con- 
trols.) Thus, a master sequencer-type of executive, 
in an implementation, would alway?, be forced to 
maintain a higher priority than the functions (or pro- 
cesses) it invoked. Other types of o&ring consider- 
ations and their alternatives. such as timing, are also 
readily apparent. It is clear. for example, that in the 
implementation of a primitive composition control 
structure some data from one function must be com- 
puted before the other function is initiated: whereas 
in a primitive set partition structure, only one of the 
functions need be processed for a given performance 
pass. Similarly. a primitive class partition would allow 
for more than one function to be performed at a given 
time should it be desirable to do so. These facts are 
directly translatable to the various ordering 

options that are available in ;I specification for 
the processing of those functions; in a given 
implementation. 

A REAL-WORLD EXAMPLE 

As an illustration of how .\XES can be used to repre- 

sent functionally a system so as to lead the way 
towards a reliable and efficient implementation. we 
include here specifications for a satellite navigation 
system called navpak. This system is intended to up- 
date navigational parameters of Earth- referenced sat- 
ellites with imaging data transmitted to the ground 
from the satellite. The ultimate aim is to be able to 
determine the orbit and attitude of the satellite pre- 
cisely enough so that the imaging data can be used to 
answer user queries. such as “To what landmark am 
I pointing?” or “Where is Florida?” 

This example is intended to provide a specitica- 
tion of the interaction, or relationship. among system 
components for the case in which the orbit and 
attitude of the satellite is not precisely known. In this 
case, the imaging data is used to determine orbit and 
attitude state estimations from landmark observa- 
tions. The feasibility of an approach in which orbit 
and attitude estimates are obtained from landmark 
data extracted from Earth images generated by an 
on-board radiometer has been invest:gated I30 1. 
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The process of determining orbit and attitude can 
be done with varying degrees of automation. The 
least automated approach is one in which the land- 
mark observation is obtained manually by displaying 
the imaging data (retrieved from data available on 
files) directly on graphics devices. In this case, the 
correlation function (i.e.. correlating the geographic 
coordinates and the coordinates of the displayed 
image) is intended to be performed by a human user. 
The function relating the observation to the state of 

the satellite is to be performed by a computer. Here, 
the computer processing includes the computation of 
the landmark time from the coordinates of the dis- 
played image, integrating the best known orbit-atti- 

tude information to the time of the geographic coor- 
dinates of the landmark (the time is geometrically 

computed from known geographic coordinates asso- 
ciated with the center of a given scene, or set of 
images), computing the uncertainty of the observa- 
tion, and, upon user request, an orbit-attitude-co- 
variance matrix update based on a classical 
“weighted least squares” statistical estimation algo- 
rithm [ 3 I]. 

A total automation of orbit and attitude determi- 
nation involves automating the correlation function 
involved in the landmark registration in which pre- 

processed landmarks are input to the system and 
processed automatically one at a time (i.e., sequen- 

tial state updates). When orbit-attitude information 
is very imprecise, total automation is not feasible. At 
these times, manual interaction with the processing 
system is essential so that a person can make the 

ultimate decision as to whether a particular observa- 
tion should be incorporated or not. The system de- 
scribed here is designed for automatic processing 
with the capability for manual override at crucial 

processing decisions. 
The system structure (or set of functional relation- 

ships) is as follows. 

Structure: y = Navpak(x, s, I, c.): 
where x, y are States (of Satellites), 

s, s’ are Ordered Sets (of Images), 
I, I’ are Ordered Sets (of Places), 
(‘, c’ are Ordered Sets (of Ordered sets (of 

Images)), 
0 is an Option, 
x’, X” are States (of Satellites), 
1, is a Place, 
I, is an Ordered Set (of Places): 

Navpak: .V = .f;(x-, s, I, c, 0) cojoin 
0 = Choose(,y, .s, I): 

.f;: ?‘ = .f,(s, s, 1, c) or 
“=E,,tt?l 

coor y = .Y 
H=Term,nate 

.cl: J = Navpak(_u’, s’, I’, c) cojoin 
(.Y’, s’, I’) = Override(.u, s, I): 

Bc ?’ = .J,(s. .s, (‘, I,, I,) cojoin I, = First(l) 
coin&de 

I2 = Second( 1): 
J,: y = Navpak(x”, s. I,, C) cojoin 

X” = extract/filter Inler~e,,t.,lM(X, 7, I,, (,) 
failure s” = _y ; 

syntax: Choose to Override s, s, I, c and aid automatic 
correlation by Intervene or qualify with QA to 
obtain y. 

end Navpak: 

Figure 17 shows the hierarchy of functions for 
navpak, a projection from the AXES definition. 

We begin with an initial estimate of the state of the 
satellite X; a preselected “scene” or set of images of 
a portion of Earth s ; a set of predetermined landmarks 
or Earth-based locations 1; and a set of image sets that 
have been previously identified as images of particu- 
lar Earth landmarks c. The intent is to produce a new 
state estimate y. 

navpak is related to its offspring, f, and Choose, 
by a cojoin structure. Choose examines x, s, and I 
and, based on these values, will produce a value of 
type Option, which consequently gets used as input 

to .f,, which in turn produces .Y. Function f; is related 
to its offspringJ;, B, and Clone, by or and coor struc- 
tures. In AXES, a function can be replaced by its next 
most immediate level of decomposition by simply in- 
serting the level description appropriately in an AXES 
statement, as in the decomposition forf,. In the case 
of J;, the determination as to which function is to be 
performed is dependent on the properties “0 = 

Enter, ” “0 = Proceed,” and “0 = Terminate.” Re- 

lated to its offspring, navpak and Override, by a cojoin 
structure, fi provides the opportunity to select new 
data with Override and then to go through the same 
procedure recursively until the data are acceptable to 
“Proceed” to B or “Terminate” accepting the initial 
state value as the best state estimate. To Proceed at 
B entails using the first landmark to update the state 
by extract/filter (if extract/filter fails, the initial data 
are salvaged for the next try) and then the remaining 
set of landmarks, along with the new state estimate 
x”, is resubmitted to the next recursive instance of 
navpak. The failure and extract/filter str&ures, as 
well as some operation definitions described in this 
section, can be found in Appendix 2. 

Each leaf of navpak is either a previously defined 
AXES operation [in this example, Clone, is an opera- 
tion for any type, First and Second are primitive op- 
erations on type Ordered Set (of T)], a recursive in- 
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Figure 17. navpak. 

Navpak 

vocation (navpak itself is recursive), or an unspecified 

function referred to in the user defined syntax (in this 
example, Intervene, QA. Choose, and Override are 
unspecified functions and are referred to in the synmx 
statement appearing at the end of the AXES definition 

for navpak). 
Each variable is identified with a previously de- 

fined data type [in this example, we refer each vari- 
able to State (of T), Ordered Set (of T), Satellite, 
Image, Place, or Option]. The navpak system re- 
quires a large amount of data to be processed. Al- 
though much of the data (such as the images and pre- 
processed landmarks) are intended to be implemented 
by file representations, this description concentrates 
on the propertie:s or characteristics of the data, leav- 
ing unspecified a particular implementation. Data 
types used for navpak are discussed in Appendix I. 

Once designed and verified, a structure is ~rsetl for 
an operation definition by identifying particular op- 
erations for the unspecified functions and particular 
variables for those variables mentioned in the user 
defined syntax. For example, particular operations 
for Choose. Override. Intervene, and QA and partic- 
ular variables for .Y, s, I, and (’ would be identified 
when ~/silrg navpak for an operation definition. 

Particular operations can then be allocated, either 
manually or automatically. to particular resources. 
For example, particular Choose and Override oper- 

Uavpak Exrract/Pilter 
Intc‘rvene. QA 

Failure Clone1 

ations would most likely be assigned to human op- 
erators in a navpak implementation. whereas First 
and Second would most likely be allocated for com- 
puter processing. 

We could also use navpak to defne another struc- 
ture. In such a case, for example. K~.(,,,\itL,,,l operations 
could be “plugged in” for Choose and Override in- 
dicating that the “use” of the use of navpak would be 
the assignment of names of objects. This use of 

navpak would ensure that the ultimate decisions 
would be accomplished by manual interaction with 
the processing system. 

extract/filter is itself defined as an :\xts structure 
in this example. extract/filter determines whether the 
landmark measurement is suitable to be used to up- 
date the estimated state of the satellite. In Figure IX 
a projection of the specification for extract/filter is 
shown. Each operation that appears at a leaf node i\ 
a specified AXES operation except for the two opera- 
tions circled by dots, I and Q. These two operations 
are the unspecified functions of extract/filter. The 
syntax selected here for this structure is not as English 
in character as it is functional, as compared to the sug- 
gested syntax for navpak. Different syntactic forms. 
including those which are graphical, may be chosen 
for structures. depending on user preference. The 
navpak structure II.SC.S extract/filter by substituting 
“Intervene” for “I” and “QA” for “0.” (Other 
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structures, such as or, cojoin, and failure are also 
used to define navpak.) In this case, we are wing 
structures to define yet another structure. In a similar 
way, the extract/filter definition uses, for example, 
the incorp structure (see Appendix 2). 

The landmark extraction function Lmkrgs (see 
Figure 18) integrates the vehicle state and covariance 
matrix to the time of the landmark and defines the 
uncertainty in the measurement. The landmark ex- 
traction function may reject the measurement auto- 
matically if it cannot find the landmark in the chosen 

scene. Lmkrgs is a rather lengthy operation, dis- 
cussed in terms of the data types vectors, matrices, 
scalars, time, and angles in [32]. Of interest is the 
fact that many submodules and groupings of sub- 
modules were able to be used over and over again, 
both within the definition of Lmkrgs itself as well as 
for various other operations within navpak, specifi- 
cally, operations Final and Update for the incorp 
structure (see Appendix 2). 

If the landmark extraction is not successful, the 
measurement is rejected. If the landmark extraction 
is successful, the measurement is automatically cor- 
related with a preprocessed image of the landmark 
(see operation Find in Figure 18 and the expansion of 

Figure 18. extracthilter,,u. 

Lmkrgs 

Find 

Find in terms of operations on Ordered Sets and Im- 
ages, Appendix 2) in an attempt to obtain a better 
measurement time within the uncertainty “window.” 
(See operation Search in Figure 18, in which a region 
is superimposed on the scene and the chip is matched 
with the images in the window of the scene.) The cor- 
relation is functionally related to the intensity of the 
image and the intensity of the chip for each particular 
location in the region being searched. The specifica- 

tion for Search appears in Appendix 2, along with 
structure definitions used to specify Search. If a neg- 
ative correlation is found, the measurement is re- 
jected automatically. If a positive correlation is de- 
termined (see the operation Iterate, Figure IQ, the 
user has the option to incorporate the measurement 

immediately by specifying a particular I function; if 
this option is not exercised, automatic processing 
continues until the region is considered completely 
searched. If at any step of this process the landmark 
is rejected, the error filters back up the extract/filter 
structure. Subsequently, if extract/filter fails, error 
recovery is achieved, as seen in the higher-level def- 
inition for the navpak structure. 

At each “better” correlation, the user may decide 
to incorporate the measurement (see the operation 
Incorp, Figure 18). When the “best” correlation is 
determined, the measured landmark is compared to a 
computed landmark. The computed landmark is 
used to construct a new region and the measurement 
is tested to see whether it can be found within the 
new region. If the measurement is not within the new 
region, the measurement is rejected. If the measure- 
ment is computed to be successful, the user may 
decide to reject the measurement if not satisfied with 
the results. This is accomplished by specifying a 
particular Q function. If this option is not exercised, 

the permanent state is updated, a successful instance 
of navpak has been completed, and the next instance 
of navpak uses the new state for its next 
measurement. 

EXPERIENCES WITH THE APPLICATION OF HOS 

HOS has now been employed by our own staff in 
several different types of application. They include 
those that were familiar to our engineers as well as 
some that were not familiar at the beginning of a 
project. There was direct involvement in some appli- 
cations whereas in others, involvement only on par- 
allel efforts. Both original designs and redesigns have 
been prepared. Likewise, in-line verification has 
been performed on some projects, independent veri- 
fication on others. In all of these experiences, a 
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conscious attempt has been made to analyze our- 

selves and others in order to enhance either our own 
techniques or theirs. 

Throughout this process, certain trends, patterns. 

or common experiences have taken place. Phenom- 
ena have been observed, both with respect to the 
design and verification processes and to the other 
processes, all of which are directly related to design 
and verification. 

Some Experiences on Specific Projects 

One of the first projects was a respecification of the 
Apollo Guidance Computer (AGC) operating system 
(OS), an application familiar to us [26]. Unfortu- 
nately. we had a great deal of difficulty reconstructing 
the pieces. This was due mostly to the fact that the 
AGC OS was poorly documented. Our only solution 
for completely understanding the system (which in- 
cluded OIII- own results of various design processes, 
including our own coding and our own verification) 
was to go back and pour over the original code, which 
was very clever and difficult to understand. When we 
began this effort. we thought there was little in the 
AGC OS upon which we could improve. This attitude 
was partly a result of the fact that no errors were 
found for several years within the OS itself. However. 
when we attempted to respecify the OS, we discov- 
ered that many of the development errors that OC- 

curred in the application programs using the OS 
would not have occurred if the AGC OS had certain 
other inherent properties; for although the AGC OS 
had properties of hidden data, it did not have prop- 
erties of hidden timing. From this effort, we therefore 
determined that the AXES methods were very helpful 
in demonstrating more reliable design goals with re-. 
spect to interfaces between application programs and 
the systems software that executes these programs. 

With respect to another project, Position Locator 

Reporting System (PLRS). our charter was to selecl. 
the most complex module. specify that module with 
;\xt.s. and demonstrate the advantages of applying 
an effective methodology. We did just that. This was 
the first effort in which we attempted to use AXES in 

an ongoing project. Not only was our aim to demon-- 
strate its effectiveness. but also to perform this task. 
without impacting schedules or deliverables. In this 
proce\\. however. we determined that the use of an 
effective methodology can benefit not only a new 
project, but also an ongoing project that already em- 
ploys ;I different methodology 1331. 

When our engineers began this effort, the ongoing 
prc?iect engineers were *just completing the design of 

their specifications and were about to embark into a 
design phase that would result in the implementation 

of computer code. As a result of our respecification 

to one module in their system, it was possible to have 
an understanding of the system and the methods 
used to develop that system. Recommendations for 

specific ways of enhancing both their system and the 
methods to develop that system were made, although 
this particular system was being developed with 
methods that were beyond the sophistication of most 
conventional systems today. In the process of defin- 
ing standards for the chosen module (i.e., common 
structures. functions, and data types), it was deter- 
mined that many of these standards were not only 
applicable to other modules in the system but to a 

family of systems within which this one resided (i.e.. 
other communication network systems). During the 
same respecification process. 16 categories of quex- 
tionable areas. such as unanswered questions, incon- 
sistencies, incompleteness, and redundancies were 
determined. This was not only a demonstration of 

the advantages of using an effective methodology. 
but this information could be directly applied for the 
next phase of development. It is our own opinion. 

however, that many of these problem areas would 
have been uncovered prior to our ir.volvement had 
an attempt been made during the specification phase 
to integrate the top levels of the specification from 
the beginning. (This same phenomenon was ob- 
served in the Navpak project as well, and Navpak 

had been around a lot longer than PLRS. In fact. a 
“working” implementation for it already existed. In 
this case. the integration of specifications was often 
missing since the problem was too “6lmiliar“ to the 
N avpak engineers. 1 

One of the more interesting \ets c)f observations 
made was that involving a project for which a soft- 

ware system was conceptualized and then developed 
to completion by our staff. This involved the design 
of the Universal Flowcharter in <IYES, which was im- 
plemented in P,~SC~L [ 28,291. The programmers. who 
implemented the flowcharter. determined the design 
of the code by using AXI:S specifications as a guide. 
There were several different engineer, on the project. 
Some of them were involved throughout the project: 
others only came in during the programming stage. 
Although our charter was to build a universal tlou- 
charter, we were asked to apply ZYE:; whenever pos- 
sible. We had the unenviable positicn of attempting 
to design something that had never been done before, 
provide a design in light of continuously changing re- 
quirements (this was as a result of both designing a 
new concept and designing that concept for universal 
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use), deliver and implement that design in terms of 
well-defined deliverables, and use a methodology 
(which was our own) throughout all phases of devel- 
opment (when this had never been done before). We 
were also observing ourselves continuously to see 
how effectively we were dealing with all of these 
considerations. 

As delivery dates got closer, some designers pan- 
icked and decided to start implementing before all of 
the data types were rigorously defined and therefore 
before the control maps were completely defined. 
Others forced themselves to complete the control 
maps for a particular specification unit before imple- 
mentation began. Of that set of modules that was com- 
pleted, some had to be changed after implementation 
began (e.g., some data types were too specific and 
were better suited for another machine environment; 
others needed to be defined in more detail). We did 
find, however, that any errors that occurred in imple- 
mentation were in those areas where the specification 
was not complete before implementation. That is, if 
all changes were negotiated and specified, chances of 
an error in implementation were almost nonexistent. 
The other modules (i.e., those that were not com- 
pletely defined) were not only error prone, but took 
much longer to debug than those modules whose 
specifications were completed at least once before 
implementation. 

The Navpak project had the most implementation 
details embedded in its specifications. A possible 
reason for this fact was that the Navpak system was 
already implemented in at least one form, and it is 
often the case that engineers update specifications 
further with implementation considerations when 
more is thought to be known about the implementa- 
tion. One of the potential problems they would have, 
therefore, would occur when they wanted to make a 
change to their existing system; for each time there 
would be a change, it could be necessary to redesign, 
or at least retest, the whole system. This could be the 
case, for example, if a new user option were to be 
incorporated. This situation is typical of conven- 
tional methods and is a good example of how a 
design problem can affect the verification process in 
more than one iteration of a particular phase of 
development. It is for this reason that we chose to 
discuss a portion of this particular system in more 
detail. 

Although each of these projects has had its own 
interesting aspects, it has also been quite interesting 
to observe the commonalities that occur among proj- 
ects. The process of applying a methodology to each 
project has certain common elements, and the results 
of that process also have certain common elements. 

For example, the common process of defining AXES 
modules within each given project produces the com- 
mon result of identification of commonality between 
modules in that project. As a result, new structures, 
functions, and data types are defined and can be 
added to the general AXES library, as well as to the 
project specific AXES library. Errors, in particular in- 
terface errors, are always found within existing sys- 
tems, whether they exist as requirements or as com- 
pleted code. In these projects, a comparison of the old 
and new versions of a given module is always made. 
One cumulative result of all these efforts is the list of 
properties that are recommended for a methodology 
(discussed in an earlier section) as well as sets of 
project specific recommendations based upon that 
list. For every ongoing project, a minimum set of rec- 
ommendations is always made, if it is not too late to 
make some incremental changes. For every project 
just starting up, a more complete set of recommen- 
dations is made. An example of one set of recom- 
mendations is shown in Table 1. 

Certain advantages, as a result of using a more 
formalized approach, can be directly related to mak- 
ing life easier for the designers and verifiers on a 
project, as well as for the managers, implementers, 
and documenters. Some of these will be discussed 
below. 

Acceleration of the Learning Process 

The engineers who performed work on these projects 
needed to go through a learning process of some sort. 
This varied horn learning a new application, to learn- 
ing about someone else’s module on a familiar appli- 
cation, to relearning one’s own module after some time 
had elapsed. On these projects that had applications 
with which we were most unfamiliar, such as PLRS, 
we were able to take advantage of such a shortcoming 
in order to test our methods as a learning technique. 
Our method of understanding, in this case, was first 
to attempt to construct a control map; by doing so, 
we were able to determine existing functions and their 
relationships. This process not only provided us with 
an accelerated means of asking the questions that 
should be asked to construct the definition of a mod- 
ule, but it also became clear that this was a technique 
for prompting questions that otherwise might never 
have been asked; for during this process we found that 
there were areas in the documentation that were 
either not clear enough, missing, inconsistent, redun- 
dant, or not integrated with other areas. 

The fact that we were able to use the control map 
technique as an accelerated learning process for our- 
selves suggested to us that this same technique could 
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Table 1. Recommendations of Standards 
-______ 

lk/i/ririo~/ r!f dcsi,yr~ gortls: For example, definition of interfaces should be made in the specification phase: i.e. I integrate from the beginning. 

Ri/lr,.\ /ill- tlc\;,~rr tr~tl \~~Cfi~trti~~: Specifications should be detined hierarchically, and rules (e.g.. those that accompany the control map) 
should be followed with respect to how one level in the hierarchy relates to the function directly above it. These rule\ should include way\ 
ofdetining the invocation of a set offunctions. input and output flow. input and output access rights. error detection .md recovery. and 
ordering. 

Iu/c!:/~Kc \p(.c.[fic.rttio/~ ~l~~c,r~rrlcz/~t: For every system a standard dictionary (01. library) should exist that provide\ common meanings. way\ of 

\aying things, ways of doing things, mechanisms for defining a system. s) stem modules. and support tools and techniqllec. An evolving 
dictionary is recommended that includes a set of 
definitton\ of terms 
formally defined data type\ 
for-mally defined control structures 
5) Gem fimctions 

L’.sv~ //rti//r~i/: A user manual should be provided that contains checklists and explains ( I) how users interpret the standards in the interface 
specification document: (21 how designers design modules to add to the “library” of the interface specification document: and (3) how 

managers define new standards for system development that in turn can be convened, by the designer\. to modules fol- incorporation into 
the interface specification document. 

I/.%cJ. YU~C/C :o i/llplr,,lc’r2l~itif~/~: If specifications contain certain consistent propel-tie\. one can take advantage of these properties bq 
under\tanding their consequences with respect to implementation. Given that there are standards for specifying. it would expedite the 
implementation process if standards for specifying were defined to go from a specification to an implementation. The use!- guide should 
include standards for (I) going from the specification (e.g.. a control map) to ;I computer allocation; (2) reallocating functions to a 
computer. and (3 I providing for reconfiguration of functions in real time. 

Dc:/i/~ifkj!i (!I clc,.ck)p,ll~,~~l ~otlcl: The definition of a development model is most helpful to the manager, who is responsible for integrating all 

the phases of development. In addition to the above recommendations, the development model should define phases o”development and 
how to integrate them: disciplines (such as management. design. verification, implementation. and documentation): and an integrated 
application of tool\ and techniques that are to be used, and how and when they are to be used throughout the development proce\a. 

be used ,IS a learning tool. for example, for those 
people new to a project; a manager learning about 

the work of the people in his project: designers and 
verifiers learning about each other’s modules in the 
same project: implementers learning about the speci- 
fication from which they are building: and users, 
such as maintenance people, learning about the sys- 
tem they are using or changing. 

Acceleration of the Specification Process 

In the process of constructing various specifications, 
we found that the control map technique was quite 
effective in expediting what are often considered to 
be design processes. In those projects for which we 
were given the task of defining an alternative module 
to an existing specification, the existing specification 
was, for all practical purposes, thought to be com- 
plete. But it was necessary for us to design more ex- 
plicitly function definitions, including data defini- 
tions, as well as the integration of these functions. We 

were able to determine. for example, types of design 
trade-offs: design decisions with respect to interface 
correctness (i.e., verification before the fact): corn-- 
mon u\e of specification modules (data types, oper-. 
ations. and structures): more powerful and simpler 
ways of conveying specifications; when each speci-- 
fication module was complete; how to integrate mod- 
ules safely; common rules (or management standards) 
of communication between modules: methods of de-- 

fining a system so that changes could he made safely: 
and the effects of those changes tractable within the 

design and during the design process. 
Our findings were that these methods not only 

supported a designer in providing designs more 

quickly, but also helped to point out things that might 
otherwise have been completely forgotten. 

Verification and Validation Aid 

Within our various efforts for which there was an 
existing module with which to start. several errors 
were discovered by the two-step process of formal 
definition of ( 1) the data types that were used and (2) 
the structure (or organization) of the existing mod- 
ule. Because problematic areas were detected early, 
later development phases were able to benefit: those 
problems that had not been forestalled were not only 
able to be detected sooner. but were also prevented 
from surfacing later or propagating into worse 

problems. 

Establishment of Design Goals 

In the process of understanding a module on an 
existing project, especially a large or complex one. it 
would always have been helpful if the specification 
had been concerned more with the definition of the 
relationships of specified functions (particularly at 
the top level). The control map technique forced us 
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to consider integration of the functions in the system 
from the very beginning. Such a design philosophy, if 

applied, not only aids in understanding a design but 
eliminates integration problems that would subse- 
quently show up in later development stages. Thus, 
if a specification were integrated, its implementation 

would be able to be an evolvement rather than a 
“redo,” as is usually the case, especially in the 
development of a conventional system. 

Enhancement of Existing Techniques 

We found that it was possible to indicate certain 

problem areas or demonstrate ways of making cer- 
tain improvements to an ongoing project and do so 
without impacting schedules or milestones if neces- 

sary (it always was in our case). Those types of 
improvement included enhanced methods of error 
location, the actual discovery of errors, and off-line 
methods for providing the engineer greater (or more 
quickly obtained) visibility. (An automated graphics 
tool would be an example of an add-on feature that 

would not necessarily have to halt progress during a 
system development.) 

Management Visibility 

In those projects in which we were asked to look at a 
part of a system, we were able to determine a “feel” 

for the state or health of the specifications of the sys- 
tem in general. For example, a better idea could be 
formed of the types of interface problem that needed 

to be resolved before a specification could be suc- 
cessfully implemented. Those steps were determined 
that would be necessary before a specification could 

be called complete, and certain recommendations 
were determined that were thought to be helpful in 
providing a more reliable specification more effi- 

ciently in the future. 

The Need for Constructive Standardization 

Put simply, the most urgent need on any large-sys- 
tem development process is that of constructive 

standardization. Some standardization, if it is effec- 
tive, is certainly better than none at all; but if a 
project is already in development, it is not usually 
possible to apply an ideal and complete set of stan- 
dards. However, it is possible to use incrementally 
those standards that would enhance the development 
process either by finding errors or by accelerating re- 
maining phases of development. We did this on one 
very large software effort with uncompromising 
schedules. For example, we discovered that many in- 

terface errors took place in the implementation phase 
when programmers would use instructions in an un- 
structured language, such as “GOT0 + 3.” Errors 
would creep in when someone would come along, 
often the same programmer, and inadvertently insert 
acard between the GOT0 instruction and the location 
at which it should have gone. Once we discovered the 
amount of errors that resulted, we enforced by stan- 
dardization the use of instructions such as “GOT0 

A” rather than “GOT0 + 3.” As a result, such errors 
never happened again. The same sort of introduction 
of standards could take place in any project. We have 
found that it is too easy to want to hurry the design 
process in order to meet deliverables. As a result, we 
too often hesitate to introduce additional standards 
into a system development process. But hindsight and 

recent experience, both of our own and of others, 
have demonstrated that in the end it pays to organize 
first and build later, especially when involved in the 
development of large and complex systems. 

SUMMARY 

In order to change to new and standard techniques, 
there is always the initial investment that is neces- 
sary for defining and developing a model, or subsets 
thereof for systems in general. We believe that a step 
in this direction has already been accomplished. 

Given AXES and the AXES library as a first step, a 
second step is to define a set of additional structures, 
operations, and data types that are necessary for de- 
fining a particular family of systems. Once the initial 
investment has been made to establish what in es- 
sence is a way of organizing the development of a sys- 
tem with standards and mechanisms to accomplish 

that organization, the payoffs should be quite appar- 
ent. Design time during the requirementsispecifica- 
tions phase should be no greater than (in fact, we sus- 
pect, much less than) with conventional techniques. 
Implementation designs should take considerably less 
time than with conventional practices since it is pos- 
sible to perform such a process on an almost one-for- 
one basis. We suspect that the largest savings will be 
realized within the verification processes since most 
of the recommended techniques provide standards 
that should eliminate errors before the fact, and it is 
just these very types of error for which one spends so 
much time looking today. 

APPENDIX 1. Some Data Type Definitions 

The following universal primitive operations are defined 
for any type T and can be assumed to apply to each new 
type definition: 
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Boolean = Equals (1 ,. /,I: 

CT,. II) = Clone,(r): 

r i = Identify , (1,. i,): 
I, = Identify. I/,, I:): 

The axioms that characterize these operations and there- 

fore apply, t0 any type are 

(1) 

(2) 

Equals I I ,. t,,,) == True: 

Equal\ (Identify, (r,. I,). t,) = TI-ue: 

Equals (Identify>(r,. /,). 121 = True: 
Identify, tC‘10ne2 (0) = /: 

Identify,t(‘k~ne, (I)) = I: 

(3) 

(41 

(5) 
( 6) 
17) 

The first three axioms characterize “equality” as an equiv- 

alence relation in terms of type Boolean, which was char- 

acterized by Cushing [ 19 (Appendix 4)I. The fourth 

property of equality. replaceability, is already fixed simul- 

taneouslh with the introduction ofa type T (e.g., this allows 

us to use the ” =” in each axiom definition), assuming that 

equality can be defined for a particular type by defining a 

particular equivalence relation [this must, ofcourse, satisfy 

axioms ( I-3) on any type] on an already known type (one 

that presupposes equality). 

Axioms 14) and (5) characterize the ability to choose. OI 

identify, a particular ob.ject. Axioms (6) and (7) character.- 

ize the Clone, operation, which provides for the abilit! to 

rename the same object. 

We olten make use of a special case of the Identify I 
operation. which we call the K,.,,,,,,,,,,, operation. When the 

first argument of Identify1 is a constant. Identify, can be 

viewed :I\ an operation on one argument of type 7.. 

Ii ,() ,,,,,,,,, (I / = Iclentify,(constant. I) 

An alternative wa!.; of writing any K,.,,,,,,<,,,, operation in 

\\ts is \imply to (IX the constant itself. For example. 

This alternative form appears often in the A\ES definitions 

throughout this paper. 

T),pe OI-&red Set (of T) makes possible the selection of 

values flonl ;I \et of object\ in a particular order. ‘rhe 

property WC’ want lo characterize here is simply the ability 

to di\tinsui,h which is first from “all the rest.” Ordered 

set> can bc implemented ax files, lists, or arrays. foi 

e\ainple 

Data ‘fype: (kdered :Set (of 7-j: 

primitive operations: 
I = Fir\t(ordered \et,I: 

ordered ytt, = Second(ordered \et,); 

Boole;ln = OEqunlslordered set ,. ordered setpI; 

axiom\: 
$I here r is a 7’. 

(0. h) are Ordered Sets (of T). 

Nullo is a constant Ordered Set (of 7‘): 
Fil-ztc Nullo) = Re,ject: 

Second(Nullo) = Reject: 

OEquals((,. /J) = Equals( First(o). Fir\tl/> )I 

And OEquals(Second( ~0. Seconcl( h I): 

end Ordered Set (of 7‘): 

The first Iwo axioms define the error conditions for an 

Ordered Set (of 7‘), and the third axiom provides a concept 

of equality for Ordered Sets (of 73. Ordered Set (of 7‘) i\ a 

parameterized type in that, in its use. ‘. 7 ” can be replaced 

with the name of a particular type. In the Navpuk specitic:\- 

tion. for example. we used Ordered Set (of State (of 7’)) a\ 

a particular use of this type. 

‘The algebra associated with State (of 7’1. ir\elf :I para- 

meterized type. is ;I heterogeneous algebra in terms of 

types Time and Boolean. Time was characterized in (261. 

Having a specification for Time and Boolean. we can 

noM define State (of T) a4 follows: 

Data Type: State (of 7 j: 

primitive operations: 

time = Stime(Ytate): 

f ~ Correspondent(\l~lte): 

\tatc, = Ssucc(state,): 

Boolean 7 Sequ:ll\(\tatc,. \tale,i: 

axioms: 

WIKW c \,. jl) are States lof I 

time i5 a rime. 

t isa7: 

The tirat of these axioms chat-actei-ires the rime depen- 

dence of each State (of 7). in terms of the previously 

defined -\KI~S operation. Precedes?. Precedes’! is an opera- 

tion on two value\ of type time that produces ;I Boolean. It 

provides the notion of being able to determine if one time 

precedes another. The second axiom impo\es ;I functional 

relationship between time dependence and the particular / 
of a State (of 7‘) in that two different state\ cannot be 

associated uith the same time. The third axiom character- 

ize\ equality of a State (of 7) in terms of it5 components. In 

the Navpah example we used Start lot’ Satellite) ;I\ ;I 

particular State (of 7’). 

Satellite itself, then. must be defined :I\ ;I type. The type 

definition given for Satellite i\ more analogous to a data 

structure definition than a behavioral detinition in that it 

on14 says that tv,o Satellites are equal if their component\ 

are equal and that there are four component\ of :I Satellite 

that will characterize the type. To make this type more 

useful. the primitive operation\ \pecitied (and perhap\ a 

few additional ones that would have to he defined) would 

have to be related by means of the particl.llar approxima- 

tion to the equations of motion to he u\ed for Navpak. 

Data Type: Satellite: 

primitive operations: 
sector : Positionls~~tellitc): 

\ec‘tot. ~ Velocitv(~~~tellite): 
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vector = Attitude(satellite): 
matrix = Covariance(satellite); 
Boolean = Stequals(satellite,, satellite,): 

axioms: 
where (s,, s2) are Satellites: 

StequaMs,, s& = Equals(Positions(~~), Posit~on(.s~)) 
And Equals(Velocity(~*), Vetocity( 
And Equals(Attitude(s,), Attitude(s,)) 
And Equals(Covariance( s Jr 

Covariance(s,)): 
end Satellite: 

Y = f(p) 

A 
Y = f*(S) 9 = f,(x) 

Figure Al. Composition. 

Types Vector and Matrix are discussed in [32]. The same 
sort of data structure definition is supplied for type Image 
since the only characteristics we were able to abstract from 
the information we had on hand at the time of this project 
was that an image was an object that had a particular 
intensity and associated location. 

4. Every offspring is specified to be invoked once and only 
once in each process of performing its parent’s corre- 
sponding function. 

Data Type: Image: 
primitive operations: 

scalar = Intensity(image): 
place = Location(image); 
Boolean = Iequais(image~, image,): 

axioms: 
where i,, i, are images; 

IEquals(i,, i,) = Equals(Intensity(i,), Intensity(i,)) 
And Equais(Location(i,), Location(i 

end Image: 

5. Every local variable must exist both as an input variable 
for one and only one function and as an output variable 
for one and only one different function on the same 
level. 

(See Figure A2.) 

Type Scalar is defined in [32]. Type Place was defined as 
part of a project now in progress for Defense Civil Pre- 
paredness Agency (DCPA) 13.51, where it was necessary to 
define a geographic coordinate system in order to distribute 
food, fuel, and other resources to various regions within 
the United States. 

APPENDIX 2. Some Structure and Operation 
Definitions 

All offspring of f0 are granted permission to receive 
input values taken from a partitioned variable in the set 
of the parent‘s corresponding function domain varia- 
bles, such that each offspring’s set of input variables 
collectively represents the parent’s corresponding func- 
tion input variables. 
All offspring off;, are granted permission to produce 
output values for a partitioned variable in the set of the 
parent’s corresponding function range variables, such 
that the sets of each offspring’s output variables collec- 
tively represent the parent’s corresponding function 
variables. 

Specifications for the specific Navpak structures extractifil- 
ter, incorp, and the operations Find and Search appear in 
this appendix. More general AXES structure definitions, 
which were used to define these specifications, are also 
included. 

Each offspring is specified to be invoked per input value 
received for each process of performing its parent’s 
corresponding function. 
There is no communication between offspring. 

The primitive control structures form the basis for de- 
fining other control structures in AXES. The use of AXES 
syntax and associated rules for the primitive control struc- 
tures follow: 

(See Figure A3.) 

For composition, if r = .&(0(s), 
.&: y = f?(~~) join R = .f,Of; 

(See Figure Al.) 

Figure A2. Class partition. 

(Y,,Y,) = f&,x2) 

1. 

2. 

3. 

One and only one offspring (specifically, J; in this exam- 
ple) receives access rights to the input data x from .I,,. 
One and only one offspring (specifically, fz in this exam- 
ple) has access rights to deliver the output data 4’ for ,f& 
All other input and output data that will be produced by 
offspring, controlled by Jb, will reside in local variables 
(specifically, “R” in this example). Local variable “g” 
provides communication between the offspringf, andfi. 

include A 
Yl = f+q Y2 = f2(X21 
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I. 

2. 

3. 

4. 

5. 

In 

Every offspring of the parent at .f;, is granted permission 
to produce output values of “.v.-‘ 
All offspring of the parent at .f,, are granted permission 
to receive input values from the variable “x.” 
Only one offspring is specified to be invoked per input 
value received for each process of performing its par- 
ent’s corresponding function. 
The values represented by the input variables of an 
offspring~s function comprise a proper subset of the 
domain of the function of the parent. 
There is no communication between offspring. 

the above definitions .x, 1. 3 /. ye. .I-,, x2 are ordered sets 
of variables; ,j;,. .f‘,, ,f:! are functions: property is of type 

y = f&l iz or 

y = f2!X) I property 
Y = flb.l ( Pnot (property) 

Figure 43. Set partition. 

Property (of TI [19]: and Pnot is a primitive operation on 
type property whose result is a property exclusive of its 
input argument. 

One structure, the each structure, is intended to be able 
to perform the same operation on each member of an 
ordered set of objects. Similar structures have been useful 
on other projects, such as 1331 and [%I. 

Structure: v = Each(.r. h): 

where .x. y are Ordered Sets(of 77, 
i h is of some type; 

syntaxy = F(l.v]. h): 
end Each 

include (I” = Secondl o,) 
include b’ = Clone,(h,I 
include h” = Clone]( /I.$: 

The each structure has one unspecified operation f-‘. First 

and Second are primitive operations on type Ordered Set 
(of 72, defined in Appendix 1. Clone, is a primitive opera- 
tion on an) type and is also defined in Appendix 1. Com- 
bine is a derived operation on type Ordered Set (of 73. the 
specification of which follows: 

Derived Operation: y = Combine(it. h): 
where <:I is a 7’. 

(h. ~1 are Ordered Sets (of 2”); 
Firyt(Combine((i, /J)) = (I: 
Second( Combine(o. h)l = h: 

end Cornhint:: 

The each structure can be used to define the cojoin struc- 
ture. which provides the ability to select components of an 

input set of a function that serves ax common input for 
dependent subfunctions: similarly, the coinelude structure 
provides the same ability for independent subfunctions. 
and the coor structure provides the same capability for a 
selection among subfunctions. In each of’ the following 
definitions, some type is an ordered set of variables. The 

notat ion “id,,,,(x)” is an alternative form for the notation 
“id( [hl, .Y_)” used to indicate that the user of the structure 

is to supply the value for “17” as a constant. thereby 

specifying particular id functions as mapprngs associated 
with “x” only. An implicit specific~iti~~n c?f “61” or “h” 

occurs when the id function is “performed” by simply 

replacing “s,,,,” or “.Y,~,~.” t-espectively, iy a particular 

subset of variables of “x” in the LISA of this structure. 

Structure: y = Cojoin(.y 1: 
where .I, ye JJ. .v,~,, . s ,,,,. I /. _tL are of some type, 

11. h are Ordered Set5 (of Naturals): 
Cojoin: x = A(.r,,,,. q) join ( .I, (, . !.J 1 2 / 1 I .I- ) : 
f,: 1 t I,,,. c) =- .r;c VI. .x,1 join (.Vl. \>j 2 Clone,l.r): 
.r_. .Y ,,,, = id ,,,, (.\‘,I include :’ = RI \-,,,,I 

. . 
.l”l” ’ //I, = itl,.,,( \,I: 

syntax: y = ,-t-1( Y,!,,. ,v) cojoin :’ = K(t.,,,,): 

end Cojoin; 

The specification of id. which is a derived operaiion on 

Ordered Set (of 7’) and Naturals, follow\: 

Derived Operation: i = id,,(#); 
where )I is a Natural. 

H is an Ordered Set (oi‘7‘,. 
/ isaT: 

id,,(o) = id,,_,(Second(B )) or FirhUH 1 or Keject : 
fn_., /I. 1 r/ -II 

end id: 

Structure: (J ,. y2) = Coinclude( t 1: 
where .Y, .I !. .x2. y,, yr. tIni. _I,~?, are of some type, 

11, I) are Ordered Sets (of Naturals): 
Coinclude: (y,. yl) = ,T,t.r,. .v:) join Lx,. .x2) : Clone&r): 
I’,: ?‘, = .j(.,,6,,) join -‘,,r, = id,,,& r,i 

include \.L = Ht.~~,,;i 

join .I- ,,,, :- id,,,(.\l); 
sgntax:J, = A(_v,,,,I coinclude Y.? UL1!,,,1: 

end Coinciude: 

Structure: y = Coot? .V ): 
where .Y ,’ y I, .\‘,,ii, .T ,,,, are of some type, 

property is a Property (of 7-j. 
((I, h) are Ordered Sets (of Naturals): 

Coor: J = /.,c.u)j _, 0 r 
l,,, ii,‘,,l,‘,~,,) .,I b / 1 t/t, 

’ ‘? \ ‘I !,,,\<,ir,,~,~w ,,../ k/ .1,1,. : 
.f’,: y = 41.Y,,,) join I,(,~ = idi,;(.rl: 

end Cool-; 

Has is a primitive operation on type property [ 191 that 
provides a notion of associating a particul:~r property with 
a value. 

The failure structure, the definition o!‘ which follows, 
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provides for the ability to “recover” from a “detected” 
error. The definition uses the cojoin, coor, join, and each 
structures. 

Structure: y = Failurc(.r): 
where (x, 8, Y, .r.[,,J are of some type, 

a is an Ordered Set (of Naturals): 
Failure: .v = ,,‘,(x, ,g) cojoin g = E(.r). 
.f,: Y = Clone,(g) coor P = .f*(x) 

YfR&W ! o=Reiert 
f;: 1’ = F(s,,,) join xlol = id,,,(s); 

syntax:y = E(s) failure y = F(x,,,); 
end Failure: 

The operation definition for Clone,, which is also used to 
define the failure structure, is defined in terms of the join 
structure and primitive operations on any type. 

Operation: II’ = Clone,(u); 
where u,, u2, II. 11’ are Ts: 

Clone,: u’ = Identify,(u,, ~1~) Join (u,, l(z) = Clone,(lc); 
end Clone,: 

An alternative way of writing the Clone, operation in 4xES 
is simply to omit writing the operation itself; e.g., 

“y = Clone,(.r)“ is equivalent to “.v = x.” 

This alternative form appears often in AXES definitions 
throughout this paper. 

every is a structure that requires at least two members 
of an Ordered Set (of T) as input and successively per- 
forms the same operation on the result of the operation 
performed on the first two members and the next member, 
as in the sum of a set of naturals or the product of a set of 
rationals. 

Structure: 4’ = Every(x): 
where x. .Y,, XL, .Y *, fi, ~1, x’; are of some type: 

Every: y = Reject or .v = f&s,, X2 
rp=t?eject I ! slfReiecl 

f,: y = F(x,, x;j 
join (I,, x,) = S(X): 

) coor 3 = ,f,,(.Y,, .r:L, 2 
s”,=lWcct 4 ’ .?‘,811e kct 

cojoin (xi. x’;) = S(.r,); 
f,: .J’ = F(x,. n) cojoin g = .f,(x;, ai); 

syntax: s = ,f<.r>; 
end Every: 

The every structure uses operation S, which produces the 
first and second component of an Ordered Set, the specifi- 
cation of which follows: 

Operation: (r,. s2) = S(s); 
where (s,. x2) are Ordered Sets (of T), 

x,isaT: 
S: xl = Firs&r) coinelude ,rp = Second(x); 

ends: 

The extract/filter structure, discussed in the main text ofthis 
paper, is specified using structures (of which cojoin, coot-, 
and coinciude have been specified above and incorp is spec- 
ified below), data types previously defined (see Appendix 
I), and operations (of which Find and Search are specified 
here and Lmkrgs is discussed in length in [32] and in sum- 
mary in the main text of this paper). 

Structure: .v = ExtractiFilter(x, s, m, c): 
where I, ,Y, X, are States (of Satellites), 

X, chip are Ordered Sets (of Images), 
m is a place, 
c, ellipse, ellipse’, ellipse” 

are Ordered Sets (of Ordered Sets (of Images)), 
s is an Ordered Set (of Images), 
pl, p2 are Scalars: 
0 is an Option: 

Extract/Filter: ?‘ = ,f,(w, s, m, c’ I ) coor 
1 &Reiwr.i 

F = Rejectj ,II=fIe,eCT; 

,f,: y = .f&~,~~, s, M, c. ellipse) cojoin 
(x,,~, ellipse) = Lmkrgsb, s. m): 

.G .v = Reject\J,_Rejra coor 

?’ = J3,c.r m, s, tn, c, ellipse 
I ~&lrct); 

f:,: Y = f4L~,TI, s, m, chip, ellipse) cujoin 
chip = Find(/?l, c); 

f;: x’ = Reject Ih,l,=RcJeet coor .’ 

X’ = .f5f~,, s, m, chip, ellipse ): 
chir7fKrjri.L 

1%: y = f,(s,,, s, nz, chip, ellipse’, p,) cojoin 
(p, ellipse’) = Searchfchip, ellipse); 

f,: y = Reject coor 
il,‘” 

y’ = Iterate(_u,, s, m, chip, ellipse’, p1 ); 
P,>O 

Iterate: 4’ = N(x,~, s, M. chip, ellipse’, p,, f?) cojoin 

f) = I([>,); 
N: _Y = Iterate(x,,, s, m, chip, ellipse’, ~~/~=,.,i,~) coop 

?: = R(x,,, s, jn, chip, ellipse’, p,l H=PPOTPCd) 

, coor 
.s = incorp,(r,, s, 172, ellipse’ 

R: y = W(x,,, s. m, chip, ellipse”, p,, p2) cojoin 
(ellipse”, pI) = Search(chip, ellipse’): 

W: r = Iterate(s,, s, tl?, chip, ellipse”, ~2~~,2_zB,~ ceer 

4’ = incorp,(x-,, f, ~2, ellipse” 
I u* -i>,> 1)): 

syntax: x’ = extract/fifter,,(.r, s, m, c): 

end Extract/Filter; 
Structure: x’ = Incurp(.u, 9, rn, e); 

where x, s’, x1 are States (of Satellites), 
e. L’ ’ are Ordered Sets (of Ordered Sets (of Images)), 
0 is an Option, 
m is a Place, 
s is an Ordered Set (of Images): 

Incorp: X’ = f,(Xc, c. e’) cojoin 
(-x2, e’) = Final(x, s, TPI, E); 

.f;: x’ = Reject/ coor 

Assure: K’ = &(x~, e, P’, 8) cojoin 8 = F(r, c’): 
jif:,: X’ = Assure(x,, c, e’ 1 coor 

R=R”b 
.Y’ = Update(.r, P, P’ 1 

R=)lnrcee,i 
coor 

I’ = Reject 
1 a-nmnina,e 

syntax: x’ = incorp&, s, n7, e); 
end Incorp; 
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incorp is a structure intended to incorporate a measurement 

and update the estimated state of a satellite. 
In incorp. Test is a scalar valued operation that checks 

the quality assurance of the measurement based on pre- 
determined criteria [ 321, and operation F is a user supplied 

operation that may impose additional quality assurance 
checks. F could be allocated to a human operator, for ex- 
ample. whose “better judgment” would be the additional 
quality assurance function. 

Operation: Chip = Find(,x, c); 
where VI is a place, 

c’?. c are Ordered Sets (of Ordered Sets (of Images)). 

12. (‘I, chip are Ordered Sets (of Images), 

I, is an Image. 

,y is a place, 

h. h’ are Booleans; 

Find: chip = fl(nl,. c ,. c2) cojoin CC,. c.~) = S(C): 

f;: chip = Reject1 r,,=b,c,vrf czar chip =f~(m, (‘1. (.z/ c,zl(pjl.,,I); 

,fi: chip = /$~rn, <,I, cz. h) cojoin h = Locate(m, c,): 

11,: chip = (‘, ~ 
h=Tmc 

coor chip = Find(m, c.~/ h=Fa,~i ): 

Locate: b = f‘l(rn, I,, I,) cojoin (I,, lu) = S(c,); 

f ,: /J = False cool- h = .f5(m. I,, I, 1: 
I, =Ill.Jvl’l IltKPJe(‘t 

,/;: h .&(,?I. I,, h’) cojoin h’ = Equals(m, ,L() 

cojoin g = Location( 

/,;: h TI-ue’ coor 
I,‘- I I ,I< 

h = Locate(m. /,I ,,,_ v;3,5,,). 

end Find: 

Find is an operation that “finds” the set of images that con- 
tains place 111 in a set of sets of images c. 

Operation: I/I. c,‘) = Search(chip. P): 

where chip is an Ordered Set (of Images), 
R. c’. /j ’ are Ordered Sets (of Ordered Sets (of Images)). 

I’. I’ ’ are Scalars. 
5. x are Ordered Sets (of Scalars): 

Search: I/I, I ‘) = f’,(chip, (J 
11,,,:,,,:,1~,2 

coor p =o 
coin&de 

(” = l’lFII.\lIi I=I<*.Jp(.I: 
./,I I[‘, 1,’ = ,/i(chip. 17. p’)) 

cojoin CR. p’) = .f,(chip, (2): 

,I;: C/J. (2’1 = Search(chip. R ) 

,/;,: R = Second( (1) 

coor ,’ = p’ 

coinclude C’ = R / p,,,t; 

coinclude p ’ = .fJ tf, xl 
,join c= IntensitylFirst ((,)I 

include x = Intensity[chipl: 

Search is an operation that matches a preselected set of 
images with .I component of a set of sets of images when a 
positive correction 11 is found. The each and every struc- 
tures are used to define p. In the definition of Search, “\“’ 
is an alter-native symbol for the sum operation on Scalars 
and ” ” i\ an alternative symbol for the product operation 
on Scalar\. 
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