
RELIABILITY I N TERMS OF PREDICTABILITY

M. Hamil ton and S. Z e l d i n

Higher Order Software, I n c .
Cambridge, Massachusetts

ABSTRACT

Issues of r e l i a b i l i t y i n c l u d e i d e n t i f i c a t i o n o f e r -
r o r s i n r e l a t i o n t o a p a r t i c u l a r o b j e c t system. Ex-
per ience i n l a r g e system developments i n d i c a t e s t h a t
o b j e c t i v e e r r o r i d e n t i f i c a t i o n i s n o t a s imple pro-
cedure. P a r t i c u l a r aspects o f e r r o r i d e n t i f i c a t i o n
and a n a l y s i s f o r a la rge , complex, r e a l - t i m e system
a r e addressed. I n a d d i t i o n , some measures taken,
as a r e s u l t o f t h i s experience, t o address these
issues o f r e l i a b i l i t y w i t h respec t t o system d e f i n i -
t i o n a r e discussed.

I . INTRODUCTION
I n o rder t o t a l k about r e l i a b i l i t y , we need t o

t a l k about systems and e r r o r s and systems which have
e r r o r s o r systems which do n o t have e r r o r s .
r e l i a b l e system i s a p r e d i c t a b l e system; i t does ex-
a c t l y what i t i s intended t o do. J u s t how r e l i a b l e
a system i s depends on t h e e x t e n t t o which t h a t sys-
tem i s e r r o r - f r e e . But, what i s a system? What i s
an e r r o r ? And what does i t mean f o r a system t o
have an e r r o r ?

The s t r u g g l e f o r answers t o these quest ions i s
n o t j u s t a mere exerc ise i n a p h i l o s o p h i c a l d i s -
course, b u t r a t h e r t h e outcome o f such an exerc ise
cou ld have fa r - reach ing p r a c t i c a l i m p l i c a t i o n s i n a
t y p i c a l l a r g e system development process. Th is pa-
per discusses t h e i m p l i c a t i o n s we experienced w i t h
a l a r g e system development as a r e s u l t o f having
gone through such an exerc ise .

Consider a system as an assemblage o f o b j e c t s
u n i t e d by some form o f r e g u l a r i n t e r a c t i o n o r i n -
terdependence; a system i t s e l f c o u l d be an o b j e c t
w i t h i n another system. (For example, a so f tware
system, a hardware system, and a man-in-the-loop
a r e n o t o n l y systems, as i n d i v i d u a l s ; b u t they
c o u l d a l s o be o b j e c t s w i t h respec t t o an o v e r a l l
system w i t h i n which t h e i n d i v i d u a l systems a l l r e -
s i d e .)
a re u n i t e d cou ld determine j u s t how r e l i a b l e a par-
t i c u l a r system i s .

A p a r t i c u l a r system may be considered from many
p o s s i b l e v iewpo in ts (o r development l a y e r s) . I f ,
f o r example, one i s concerned w i t h a d e f i n i t i o n o f
a system, i t i s viewed w i t h r e s p e c t t o what i t i s
supposed t o do. I f one i s concerned w i t h a d e s c r i p
t i o n o f a system, i t i s viewed w i t h respec t t o whe-
t h e r o r n o t t h e d e f i n i t i o n i s e f f e c t i v e l y conveyed.
I f one i s concerned w i t h t h e implementat ion o f a
system, i t i s viewed w i t h respec t t o whether o r n o t
the system i s cons t ruc ted t o do what i t i s supposed
t o do. I f one i s concerned w i t h t h e execut ion o f a
system, i t i s viewed w i t h respec t t o whether o r n o t

For a

The very mechanism by which these o b j e c t s

t h e system does what i s i s supposed t o do. Whereas
t h e d e s c r i p t i o n and implementat ion l a y e r s o f a sys-
tem represent s t a t i c views, t h e d e f i n i t i o n and exe-
c u t i o n l a y e r s o f a system represent dynamic views.

J u s t as software, as a system, cou ld be consid-
e red as an o b j e c t i n a l a r g e r system, each viewpoint
o f t h e so f tware system, as a system, cou ld be con-
s idered as an o b j e c t w i t h respec t t o t h e o v e r a l l de-
velopment process o f t h e so f tware system as a sys-
tem.
c o r r e c t focus i s necessary w i t h respec t t o bo th a
component w i t h i n a g iven system and a p a r t i c u l a r de-
velopmental v iewpo in t o f t h a t component be fore t h a t
o b j e c t as a system can be discussed i n terms o f i t s
r e l i a b i l i t y .
i d e n t i f y t h e o b j e c t i n quest ion, we cou ld be d i s -
cussing d i f f e r e n t o b j e c t s when we t h i n k we are ta lk -
i n g about t h e same ones, o r d iscuss ing a p a r t i c u l a r
o b j e c t w i t h an i n c o r r e c t assessment o f t h e informa-
t i o n concerning t h a t o b j e c t . Thus, we l l - in ten t ioned
changes f o r t h e sake o f r e l i a b i l i t y cou ld n o t o n l y
do no th ing , b u t , i n f a c t , they c o u l d make t h i n g s
worse. A case i n p o i n t i s t h e o f t e n misunderstood
s e t o f o b j e c t s c a l l e d so f tware systems.

r e l i a b i l i t y o f a p a r t i c u l a r software system i s de-
termined. If, f o r example, so f tware i s considered
t o i n c l u d e i n p u t s from e v e r y t h i n g i n t h e system w i t h -
i n which a computer program i s t o res ide , t h e r e l i -
a b i l i t y w i l l no doubt be d i f f e r e n t than i f t h e s o f t -
ware i s considered t o be o n l y t h e computer program
i t s e l f (i .e . , a s e t of i n s t r u c t i o n s encoded i n some
manner fo r a p a r t i c u l a r computer). O r , i f so f tware
i s considered t o i n c l u d e t h e s p e c i f i c a t i o n o f t h e
computer program, t h e r e l i a b i l i t y o f t h e so f tware
w i l l be, no doubt, d i f f e r e n t than i f t h e so f tware
i s considercd t o i n c l u d e o n l y t h e implementat ion o f
t h e s p e c i f i c a t i o n (i . e . , t h e computer program).
Once having determined t h e o b j e c t i n quest ion, f rom
a software standpoint , i t i s then necessary t o under-
stand conceptua l l y t h e concepts o f a so f tware e r r o r
and t h e software hav ing an e r r o r . Such was t h e case
on t h e A p o l l o p r o j e c t , where t h e issues o f r e l i a b i l -
i ty were o f uppermost concern1 .

The quest ions and corresponding answers which
f o l l o w summarize o u r a t tempt t o understand how re-
l i a b l e t h e on-board "sof tware" was a f t y i t had
f l o w n on a l l o f i t s " r e a l s imu la t ions .

The impor tan t p o i n t t o emphasize i s t h a t a

I f i t i s n o t p o s s i b l e t o p r o p e r l y

B a s i c a l l y , software has t o be d e f i n e d be fore t h e

11. RELIABILITY ISSUES: QUESTIONS AND ANS!IERS
Question: What is a sof tware error?
Answer:
menon i n e i t h e r t h e s p e c i f i c a t i o n f o r a computer
program o r t h e computer program i t s e l f .

A so f tware e r r o r was an unintended pheno-

There were

657

two major kinds of errors . One kind was determined
by analyzing a system (o r a s e t of sub-systems) on
a stand-alone basis. For example, i f the specifica-
tion had an inconsistency between i t s functions or
i f the computer program had a data conf l ic t , such
errors could be found by analyzing only the system
in question. Certain checks were made for complete
ness, consistency, and non-redundancy with respect
t o a self-contained system. A t tha t time, there was
no method t o guarantee t h i s type of interface cor-
rectness. The other kind of e r ror was determined
by checking one development layer with the layer
from which i t evolved. T h u s , fo r example, a compu-
t e r program was compared t o i t s specif icat ion; the
specification was compared t o the designer 's intent .
I t was possible t o check for inconsistencies and
incompleteness between, say, a specification and a
computer program although we d i d n o t have methods
which guaranteed traceabi 1 i ty between 1 ayers. And,
of course, we could n o t guarantee tha t a specifica-
t ion was consistent o r complete w i t h respect t o the
original intent of the designer. (Thirteen percent
o f the errors during development f e l l into this cate-
gory, while 75 percent of the development err0 s were

Today, we support the solution t o the "13 percent
problem" by providing techniques which are intended
t o eliminate other sources of problems.

due t o logical incompleteness or inconsistency 5 .)

How do you determine i f an unintended phenomenon is
an error from a practical standpoint, and once hav-
ing done so, how do you weigh the seriousness of the
error i n the context o f overall re l iab i l i t y?
There were catastrophic errors which could have
aborted a f l i g h t , errors which were worrisome t o
the success of a f l i g h t , and errors which were mere-
ly an annoyance. Other problems were o f f i c i a l l y re-
corded as "funny l i t t l e things." They weren't pro-
blems per se , b u t ye t , no one qui te understood why
they happened, since they d idn ' t make sense in the
context of known fac ts about the specification or
the computer program. Sometimes there were border-
l ine cases in t h a t the difference in def ini t ion or
interpretat ion o f the software could determine whe-
ther or n o t a potential problem was a real error .
The determination of these categories was often l e
up t o engineering judgement; others , however, were
more obvious and could be expl ic i t ly determined.
I f the computer program "doesn't work" because the
specification i s wrong, i s the computer program un
reliable?
The software was unreliable i f the software speci-
f ica t ion was unreliable. W i t h respect to the spec
f ica t ion , however, the computer program was deter-
mined t o be rel iable .

t

I f an error i s found i n the computer program during
development and a decision i s made not t o f i x the
error but t o use a "workaround" (i .e. , something
that e i ther prevented i t s happening or eased or re-
moved i t s e f f e c t) t o compensate f o r the error, i s
there an error i n the specification with the new
recorded anomaly and workaround, or does the record-
ing change the specification? I s there an error i n
the computer program? I f the computer program i s
i n execution and the error i n question takes place
due t o the error o f ignoring the workaround, what
system does t h i s error reside in?
Even though o f f i c i a l l y errors were recorded as

anomalies, unofficially the recording of an e r ror
w i t h a workaround, rather than fixing the e r ror , was
an update t o the specif icat ion.
moved, in essence, the anomaly in question. Thus,
i f the e r ror took place in f l i g h t with a workaround,
t h i s was not an e r ror t o be recorded, since nclt only
was i t o f f i c i a l l y recognized before f l i g h t , b u t i t
was also sanctioned t o f l y with special provision.
I f , however, the e r ror took place and the workaround
was ignored, the software system i t s e l f was n o t con-
sidered t o have an e r r o r , b u t ra ther the user , who
ignored the workaround, was considered t o be 'in e r -
ror.

Such an update re-

I f an error i s o f f i c i a l l y known before f l i g h t (that
i s , i t i s recorded with the spec i f ica t ion) , b(it an
o f f i c i a l decision i s made not t o f i x i t or not t o
provide a workaround, and it occurs dur.ing f l i g h t ,
i s it a software error?
Such a phenomenon would not have been recorded as
an e r ror , since a decision was made t o offici311y
sanction i t s existence in the software. Thus, i t
became par t of the specif icat ion.
I f an algorithm i n a specification i s incorrect, but
the algorithm i n the corresponding computer program
i s correct, i s the computer program i n error? I s
the specification i n error? Or i s only the design-
e r , who created the specification i n the f i r s t
place, i n error?
Technically speaking, the computer program would
have been in e r ror . Pract ical ly speaking, if i t
was feas ib le , the specification would have been up-
dated t o conform with the computer program. The
specification was in e r ror i f the algorithm c o u l d
be determined t o be incorrect , on a stand-alcne
basis, within the specif icat ion. Otherwise, the
e r ror was the designer 's , alone.
I f an error i s o f f i c i a l l y known before f l ight: and
a decision i s made not t o f i x i t , but the computer
program i s f ixed anyway, i s t h i s an error i n the
computer program?
To be consis tent , the computer program was i n error ,
because i t was inconsistent with the specif icat ion.
B u t an af ter- the-fact "f ix" was sometimes corisidered
be t te r t h a n an already sanctioned anomaly.
times, f ixes were frowned upon since last-minute
attempts t o f i x an e r ror often e i t h e r d i d n ' t f i x
the program or made i t worse. The resolution of
the dilemma of a "good" f i x was l e f t t o management,
who e i ther happily adjusted the specifi:cation by
cancelling the anomaly o r became angry a t the pro-
gram designer for his misguided good intentions,
and forced the designer t o remove the i l l ega l f i x .
Sometimes specifications are provided i n the form
o f o f f i c i a l documentation. Often, however, sn i m -
plementation i s based upon well-known assumptions
that cannot be found i n writing anywhere. Is i t an
error i f the implici t information i s followed?
What i f it i s not followed?

Other

Early in the project , implici t information made up
the major par t of a specif icat ion; i t was con-
sidered an error i f i t was not followed. Later, i f
there was b o t h implici t information and writ ten in-
formation on the same subject , the writ ten infor-
mation overrode the word-of-mouth information,
usually.

65 8

I f there i s an error i n the input t o the computer
program, is the data considered p a r t o f the computer
program when the r e l i a b i l i t y of that program i s be-
ing measured?
I f i t was assumed t h a t t he f i n a l r e s p o n s i b i l i t y o f
l oad ing c o r r e c t i n p u t s t o t h e computer program was
designated t o e i t h e r the m iss ion -con t ro l engineers,
the astronauts, o r t he hardware, then the problems
r e s u l t i n g from wrong inpu ts (e i t h e r i n s t r u c t i o n s o r
data) were n o t software e r r o r s . The except ion t o
t h i s r u l e was i f the computer program was requ i red
t o a l l o w and f i l t e r bad inpu ts .
I f certain areas o f the computer program are secure
from the user and a lock mechanism prevents him
from changing the program to f i x an error during
f l i g h t , i s the philosophy of having a lock mechanism
i n error?
Cer ta in l y , t he e r r o r t h a t was locked ou t from being
f i x e d was i n e r r o r .

Conversely, i f secure mechanisms are not implemented
and the user inadvertently causes an error because
he i s not locked out , i s the philosophy o f having a
non-lock mechanism i n error or i s the user i n error-
-or both?
An extreme case o f bad i n p u t s was when an operator
(l i k e an as t ronau t) o f t he computer program inad-
v e r t e n t l y changed erasable* i n s t r u c t i o n s i n c o r r e c t -
l y . Cer ta in l y , i n t h i s case, t he user was respon-
s i b l e fo r making an e r r o r . I t was n o t c l e a r i f the
non-lock mechanism approach was i n e r r o r . As long
as the re was an a v a i l a b l e mechanism t o change eras-
ables and t o send c o n t r o l t o these erasables, cata-
s t roph ies were poss ib le . Yet, t he computer program
could n o t be h e l d responsib le .
conc lus ion t h a t such dangerous p r a c t i c e s should
never be allowed. Yet, i f the re had been a r e a l
e r r o r i n the software, t h i s mechanism cou ld have
saved a f l i g h t . (And, i n f a c t , t h i s very mechanism
d i d save a f l i g h t i n the case o f an e r r o r from a
system i n t e r f a c i n g w i t h the software.)

HOW can re l iab i l i t y be defined until the philosophy
of error detection and recovery i s defined? What i s
the relationship between r e l i a b i l i t y and error de-
tection and recovery? Should the specification de-
termine whether or not error detection and recovery
should ex is t a t a l l or i s t h i s the responsibility o f
the computer program? I f the specification i s re-
sponsible, should the specification include ap-
proaches for error detection and recovery?

One cou ld draw the

I n the e a r l y days o f the p r o j e c t , many sof tware en-
g ineers l obb ied t o i nco rpo ra te more e r r o r checking
procedures i n t o the software. For example, i t was
considered by some t h a t a l l i n p u t data should be
checked and refused i f i t was n o t w i t h i n predeter-
mined l i m i t s . The ast ronauts and o the r users con-
s idered such measures unnecessary, s ince they as-
sumed t h a t the ast ronauts would know the procedures
so w e l l t h a t t he re was zero chance f o r e r r o r . Un-
f o r t u n a t e l y , understanding the sof tware was n o t
enough t o prevent human e r r o r s . The more conserva-
t i v e phi losophy was l a t e r v ind i ca ted when, on actu-
a l f l i g h t s , no t o n l y the ast ronauts bu t o thers made

Most o f t h e i n s t r u c t i o n s i n t h e computer progranl
were hard-wired. But t he re was a small s e t o f i n -
s t r u c t i o n s t h a t was not . This s e t was c a l l e d e r -
asable memory (as opposed t o f i x e d memory).

*

r e a l - t i m e mistakes. The "no-error checking" p h i l -
osophy accounted f o r t he m a j o r i t y o f recorded system
e r r o r s . O f course, t h e r e were t r a d e o f f s t o consider;
t he more e r r o r l o g i c incorporated i n the software,
t he more chance f o r e r r o r s from the a d d i t i o n a l so f t -
ware. Thus, a ca re fu l ana lys i s was made t o de te r -
mine j u s t where the c r i t i c a l e r r o r de tec t i on l o g i c
should be incorporated. (L a t e r we devised techn i -
ques which addressed problems on a system-wide basis
and a l o t o f prima donna l o g i c was no longer neces-
sa ry .) I n p u t e r r o r s , which caused problems i n the
software, were considered as sof tware e r r o r s o n l y
i f the s p e c i f i c a t i o n prov ided f o r t he sof tware t o
p r o t e c t i t s e l f aga ins t these e r r o r s .

I f two errors cancel each other, i s there an error?
No. However, i f a subsystem was a c t i v e w i t h o n l y
one o f the e r r o r s , t h a t e r r o r was counted.
I f an error i s not detected during f l i g h t , but i t
i s determined that i t should have occurred, i s it
t o be recorded as part o f the errors which occurred
on that particular f l i g h t ?
Unresolved.

I s "bet ter the enemy o f good" i n providing f o r pro-
tect ion against errors?
When adding redundancy o r backup con f igu ra t i ons ,
t he re were more t r a d e o f f s t o consider . There was a
t ime when we were cons ide r ing systems f o r t he ast ro-
nauts t h a t were so e r r o r - p r o o f t h a t we had f i n a l l y
created the p e r f e c t system f o r p reven t ing bad i n -
puts . There was one f l a w i n the system however.
We had n o t o n l y prevented the ast ronaut from making
any e r r o r s , we had prevented him from doing any-
th ing .
prevent e r r o r s any b e t t e r than the pr imary system
(i . e . , gener ic e r r o r s) . A wrong s p e c i f i c a t i o n f o r
a pr imary and secondary system, f o r example, cou ld
r e s u l t i n two i n c o r r e c t computer programs. (Re-
Sources a re o f t e n conpromised i n the developnent of
a pr imary system for t h e development o f a backup
system. This cou ld jeopard ize the r e l i a b i l i t y o f
t he pr imary system. Given a choice, i t i s b e t t e r ,
f o r example, t o have a pr imary system t h a t i s 99
percent r e l i a b l e over a pr imary system t h a t i s 50
percent r e l i a b l e and a secondary system t h a t i s 50
percent r e l i a b l e ; f o r i n t h e l a t t e r case, safety
could be compromised f o r s a f e t y ' s sake.)

I f there i s a "problem" i n the computer program and
i t i s not Clear if i t originated i n the specifica-
t ion , t o which system i s the error attributed?
Here, the s p e c i f i c source o f the e r r o r would be r e -
corded as unknown (i . e . , wi th respec t t o e i t h e r the
s p e c i f i c a t i o n o r the computer program).
an e r r o r would have been recorded f o r t he sof tware.

There werealso backup systems t h a t cou ld not

However,

When more than one specification ex is t s and they
conf l ic t with each other, which is i n error?
Once, the re was a quest ion as t o whether the com-
p u t e r program i n t e r f a c e s p e c i f i c a t i o n o r t he simu-
l a t o r program s p e c i f i c a t i o n was c o r r e c t .
program abor ted du r ing a s imu la t i on by one of t h e
independent v e r i f i c a t i o n con t rac to rs . I t was de-
termined by severa l exper ts t h a t t he s imu la to r
should be f i x e d so t h a t the f l i g h t program would
n o t abo r t ,
gram then worked b e a u t i f u l l y du r ing t h e next - sjmu-
l a t i o n , b u t i t aborted i n a r e a l unmanned f l i g h t .

The f l i g h t

The s imu la to r was f i x e d , t h e f l i g h t pro-

659

This i s a good example of a generic e r ro r being i n -
troduced into a system which had pref l igh t develop-
mental backup capabi l i ty . As t o which spec i f ica t ion
was i n e r ro r , when there i s a conf l i c t , there i s no
easy answer unt i l careful analysis i s performed; and
even then, the existence of an e r ro r must be decided
upon in terms of the i n i t i a l in ten t of the designer.
If several errors take place and they are la t e r dis-
covered to be caused by a root source, are a l l of
these errors recorded i n the determination of the
re l iab i l i t y of the system?
No. Errors, o ther than the root source e r ro r s , were
only recorded fo r descr ip t ive purposes in the analy-
s is of the root e r ro r . There were times, however,
t ha t i t was not c l ea r , unt i l much l a t e r , t ha t cer-
t a in e r ro r s were connected. I t is a l so no doubt
t rue tha t there were e r ro r s which were connected t h a t
were never found.
I f an error took place i n the computer program dur-
ing f l i g h t , and a system error and detection mechan-
ism took care o f the e f f e c t of that error, would
t h i s have been a recorded error?
Yes. Sometimes the same mechanism tha t would have
taken care of a software problem would a l so resolve
problems from other systems.
human e r r o r was found and recovered by the software,
the s ftware was blamed because i t reported the bad
news!' Although there were no recorded software e r -
rors d u r i n g f l i g h t i n the on-board f l i g h t software,
there were several overall system e r ro r s within
which the software resided.
affected the software, b u t , fortunately, the so f t -
ware was able to recover or t o be recovered in every
case.

In one case where a

Many of these e r rors

111. OBSERVATIONS
Of these overall system e r ro r s , 73 percent were

real-time human e r ro r s , 92 percent were recoverable
by using software, 40 percent were known about a-
head of time b u t the workaround was inadvertently
not used, and 100 percent could have been prevented
by a more encompassing philosophy and too ls t o sup-
port i t .

The analysis of the Apollo system problems during
actual f l i g h t s pointed out t h a t the philosophy of
how one goes about defining system relationships
cannot be overemphasized. The type of re la t ionships
can determine not only how re l i ab le the in te r faces
are , b u t a l so how f l ex ib l e a system i s in order t o
make new decisions with f a s t response times, both
d u r i n g development and i n real time. The need fo r
t h i s type of f l e x i b i l i t y was often crucial during
off-nominal mission conditions.

IV. QUALITY OF SPECIFICATION
The d i f f i c u l t y in measuring the r e l i a b i l i t y of

software i s , i n par t , because of an inab i l i t y to
adequately define what i t is a system is intended t o
do.
t i t y of t h a t something by comparing i t t o some stan-
dard o r u n i t . The problem of measuring a soitware
system is well s t a t ed by Manna and Waldinger :

To determine whether a program i s cor rec t ,
we must have some way of specifying what
i t i s intended t o do; we cannot speak of

To measure something is t o determine the quan-

the correctness of a program in i so l a t ion ,
b u t only of i t s correctness with respect
t o some specification.

5 With respect t o t h e i r own work, Avizienis and Chen
s t r e s s the importance of a r e l i ab le software srseci-
f ica t ion as a standard uni t of measure for devplop-
i ng equi Val en t a1 gori thms .

I f t o measure the r e l i a b i l i t y of a software sys-
tem we need an adequate spec i f ica t ion , we are faced
with the problem of measuring the r e l i a b i l i t y of the
spec i f ica t ion i t s e l f . In t h i s case , i t i s impcssi-
ble to completely measure the in ten t of a desicner;
we can a t l e a s t measure logical completeness ard
consistenty, i . e . , qua l i ty assurance.

Re1 i abi 1 i ty , i n the sense of qua l i ty assurance ,
i s addressed i n the spec i f ica t ion language, AXLS6,
by providing mechanisms t o define data types (i n
order t o ident i fy objec ts) ; functions (i n order t o
r e l a t e objects of types) ; and s t ruc tures (i n o)-der
t o r e l a t e func t ions) . The aim i s t o be able t o de-
f ine a system so tha t we can automatically che:k i n -
t e r face spec i f ica t ions s t a t i c a l l y . The foundations
of AXES are based on a s e t of contro axioms d2rived

lu s t r a t e s t h i s evolvement by the connecting dashed
l i n e s .) Each axiom describes a re la t ion of immedi-
a t e domination with respect t o a functional system.
We ca l l the u n i o n of these re la t ions control. From
these axioms, a s e t of Fhree primitive control s t ruc-
tu res have been derived . These three control
s t ruc tures ident i fy control schemas on s e t s of ob-
j e c t s . From the assumption tha t we can ident i fy an
object o r a s e t of ob jec ts , a mechanism fo r dcfining
an algebra fo r each d i s t i n c t s e t of objects i s pro-
vided in AXES. Each algebra takes the form o f a
s e t of axioms t h a t r e l a t e operations applied 1.0 ob-
j e c t s of a type.

from empirical data of large systems 1 . (F i g . 1 i l -

I m r m , , * * r , .
J

', U U,: - - _ _ _ -
U: Qual!," l r r v r r n c c Ch?CLI " i l h

RCI"ECI to R X l S

To form a system, defined as a function, icontrol
s t ruc tures a re defined i n terms of tRe primitive
s t ruc tures ; operations a re defined e i t h e r imp1 i c i t l y
by deriving them mathematically from the axioms on
a type or exp l i c i t l y i n terms of control s t r J c tu re s

660

using already defined operat ions on a type. When
an opera t ion i s de f ined both i m p l i c i t l y and e x p l i c i -
t ly , we can crosscheck the i n t e n t o f the spec i f i ca-
t i o n f o r correctness (Fig. 1) .

AXES uses the funct ional n o t a t i o n

Y = f (x)
where x i s the input , y i s the output, and f i s the
opera t ion app l ied t o x t o produce y.

I n at tempt ing t o def ine a system as a func t ion ,
we already have incorporated an element o f r e l i -
a b i l i t y i n t h a t we a s s e r t t h a t f o r every value o f
"x" we expect t o produce one and o n l y one value f o r "y".
produce the same r e s u l t each t ime we apply f t o a
p a r t i c u l a r value.

Now, we must incorpora te i n t o our d e f i n i t i o n a
means t o i d e n t i f y a l l o f the acceptable inputs and
outputs and a means t o descr ibe the r e l a t i o n s h i p be-
tween the inputs and outputs. I n AXES, each i n p u t
and output value i s associated w i t h a p a r t i c u l a r
s e t o f values. Each p a r t i c u l a r s e t of values, c a l l -
ed a data type, i s de f ined by means of an algebra.
The syntax f o r d e f i n i n g each algebra i s s i m i l a r t o
t h a t used by Guttag8, b u t the semantics associated
w i t h each a lgebr i s s i m i l a r t o the concepts de-
sc r ibed by Hoare . The semantics f o r our algebras
assumes the existence o f objects. That i s , when we
def ine a system, as i n (l) , we assume the values o f
x and y t o e x i s t , and t h a t when f i s app l ied t o x,
y corresponds t o the value x.

I n many systems, e s p e c i a l l y l a r g e ones, i t i s o f -
ten n o t r e a d i l y apparent which i n p u t values corres-
pond t o the system's intended f u n c t i o n u n t i l the
system i s decomposed i n t o smal le r pieces. Although
we s t a r t w i t h a l a r g e s e t o f "seemingly" acceptable
!slues, a p r e d i c t i v e system must be ab le t o i d e n t i f y

t r u l y " acceptable inputs o r t o produce an ind ica-
t i o n t h a t a p a r t i c u l a r f u n c t i o n w i l l n o t be ab le t o
perform i t s intended func t ion . To i d e n t i f y a sys-
tem's intended func t ion , we make use o f a d i s t i n -
guished value which we c a l l Reject . This d i s t i n -
guished value i s a member o f each data type (Fig.,?).
If an i n p u t value corresponds t o the value Reject,
as an output, then the f u n c t i o n app l ied t o t h a t i n -
p u t i s s a i d t o have detected an e r r o r . A f u n c t i o n
app l ied t o an i n p u t value o f which Reject i s a com-
ponent (e.g. , the value (1 , 3, Re jec t)) e i t h e r
assign Reject as an ou tpu t value, o r may recover"
from the e r r o r by assigning an ou tpu t value o ther
than Reject .

That i s , we expect the system t o p r e d i c t a b l y

4

Once we have i d e n t i f i e d a l l acceptable inputs and
outputs o f our system, we need a means t o descr ibe
the r e l a t i o n s h i p between the i n p u t and output,
sometimes c a l l e d the performance o f the func t ion .
We can r e l a t e i n p u t t o output by a s s e r t i n g r e l a t i o n -
ships about our system i n terms o f a l ready de f ined
operat ions and already de f ined r e l a t i o n s h i p s on a

s e t of operat ions. Re la t ions on a s e t o f operat ions
g i v e r i s e t o a h i e r a r c h i c a l system s t r u c t u r e . Th is
means t h a t when our d e f i n i t i o n i s complete, the
s t r u c t u r e of our system w i l l look something l i k e the
s t r u c t u r e appearing i n Fig. 3.

A t each node i n our h ie rarchy we s h a l l p u t a
func t ion w i t h the i n t e n t t h a t a t any l e v e l o f our
h ie rarchy (a l e v e l i s a s e t o f immediate dominated
nodes w i t h respect t o a p a r t i c u l a r node, sometimes
c a l l e d a step o f ref inement) , we can r e l a t e t h e
func t ions a t t h a t l e v e l t o the f u n c t i o n a t the node
immediately dominating them.

r (A h

Fig.: H i e r a r c h i c a l System St ructure -
We need a s e t o f r u l e s t o determine a l e v e l , and

a s e t o f r u l e s t o determine whether we want t o cre-
a t e a l e v e l (o r stop decomposing).

To determine a l e v e l , we want a l l the func t ions
a t the nodes o f a l e v e l t o be necessary and s u f f i c i -
e n t t o replace the f u n c t i o n a t the node d i r e c t l y
c o n t r o l l i n g these func t ions (F ig . 4) . This w i l l
assure us t h a t we w i l l ge t no more o r no l e s s than
we want, i .e. , t h a t our l e v e l i s l o g i c a l l y complete.

F i g . 4: Level Completeness

completely rep lac ing the f u n c t i o n a t t h e node d i -
r e c t l y above it, we must be able t o d e f i n e each
p o i n t a t which we want t o stop. We stop when we
reach a f u n c t i o n whose behavior, i .e . , i t s i n p u t
and output r e l a t i o n , has been de f ined i n terms of
o t h e r operat ions on a de f ined type, and our s p e c i f i -
c a t i o n i s complete when we determine each stopping
p o i n t . Now, i f we know the behavior o f each func-
t i o n a t a bottom l e v e l and how i t r e l a t e s t o the
o t h e r func t ions a t t h a t same l e v e l , we know the be-
hav io r o f the node d i r e c t l y above it. And w i t h the
same reasoning, we then know the behavior o f the
func t ions a t each l e v e l successively c l o s e r t o the
r o o t , o r top node. And w i t h the same reasoning, we
end up w i t h knowing the behavior o f the r o o t func-
t i o n i t s e l f . Thus, the behavior o f the top node i s
u l t i m a t e l y determined by the behavior o f the c o l -
l e c t i v e s e t o f bottom nodes (F ig . 5) .

Now we a l s o want t o assure l o g i c a l consistency
fo r a l e v e l . Since our i n t e n t , i n the end, i s t o
understand the behavior o f the f u n c t i o n a t the top
node, every t ime we t a l k about a value o f t h a t func-
t i o n we want t o assure outselves t h a t we are t a l k i n g
about the same value a t the l e v e l d i r e c t l y dominated
by t h a t func t ion ; t h a t i s , we want t o be ab le t o

As we cont inue t o b u i l d our hierarchy, each l e v e l

66 1

w: Endpoint Completeness

determine which values match up w i t h which func-
t i o n s . To t a l k about a va lue we use i t s name, o r
va r iab le .
va r iab les (F ig . 6) and ou tpu t va r iab les (F ig . 7) .

We want t o be cons is ten t about i n p u t

U: Tracing Input Names w: Tracing Output Names

To avo id s p e c i f i c a t i o n e r r o r s i n naming values, a
p a r t i c u l a r name i s always assoc ia ted w i t h the same
va lue as we t r a v e l down the h ie rarchy .
If our f u n c t i o n i s in tended t o be executed on a

computer, we want t o be ab le t o determine which
func t i ons a r e more impor tan t than o thers .
t r a v e l down the h ie rarchy , a f u n c t i o n i s always more
impor tan t than the func t i ons a t t h e l e v e l dominated
by t h a t f unc t i on , and a t a p a r t i c u l a r l e v e l each
f u n c t i o n i s assigned an importance w i t h respec t t o
each o t h e r f u n c t i o n a t t h a t l e v e l (F ig . 8) . Among
o the r th ings , we can use t h i s i n fo rma t ion t o imple-
ment s p e c i f i c t i m i n g r e l a t i o n s h i p s , bo th r e l a t i v e
and absolute, w i t h o u t c o n f l i c t .

As we

w: Complete Orderiny R e l a t i o n S h i p s

"<" m a n s "less important than")
("9' means *'-re important than"

When a system i s de f i ned i n c o r p o r a t i n g the as-
pects o f r e l i a b i l i t y , i l l u s t r a t e d i n F igures 1 t o 8,
we can l i m i t t he complex i ty o f i n t e r f a c e d e f i n i t i o n
among systems. Furthermore, i n t e r f a c e consistency
and completeness can be checked s t a t i c a l l y by com-
pa r ing the use o f c e r t a i n system s t r u c t u r e s w i t h
t h e i r d e f i n i t i o n s .

stand the system i n ques t ion and what i t means f o r
t h a t system t o be p red ic tab le , we a re then ab le t o
concent ra te on methods which w i l l address bo th the
e r r o r s on a se l f - con ta ined bas is o r those ,which r e -
s u l t from a developmental evolvement process. It i s
our con ten t i on t h a t once a system i s ab le t o be de-
f i n e d c o n s i s t e n t l y and comple te ly on a se l f - con ta ined
bas is , then we a re ab le t o evo lve f rom such a dc!-
f i n i t i o n t o a nex t l a y e r which i s a l so l o g i c a l l y
cons i s ten t and c o m ~ l e t e .

REFERENCES

1, Hamil ton, M. " F i r s t d r a f t o f a r e p o r t on t h e
ana lys i s of APOLLO system problems d u r i n g f l ight : , "
S h u t t l e Management Note 14. Char les S t a r k Draper
Laboratory, Inc., Cambridge, MA, Oct. 1972'.

2 . Hamil ton, M. and S, Ze ld in . "Higher Order !;oft-
ware--A Methodology f o r Def in ing Software. '' ElX
Trans, on Software Engineer ing, Vol, SE-Z., 40. I ,
Sept, 1975.

3. Hamilton, M, L e t t e r t o t h e E d i t o r . !)atamaticm,
March 1 , 1971.

4. Manna, Z. and R. Waldtnqer. 'The Loq ic o f Com-
Pu te r PrQgramming," IEEE Trans. on Software En-
g inee r ing , Vol. SE-4, NO. 3, M a y 1978,

5. A v i z i e n i s , A, and L. Chen. "On t h e Implementa-
t i o n o f N-Version P r o g r a m i n g f o r Software F a u l t -
Tolerance du r ing Program Execut ion." Proceedirgs,
Computer Software and App l i ca t i ons Conference
(COMPSAC), Chicago, Nov. 8-11, 1977.

6, Hamilton, 11. and S . Ze ld in . "AXES Syntax
Descr ip t ion , " TR-4. H igher Order Software, Inc . ,
Cambridge, MA, Dec. 1976.

7. Hamil ton, M. and S. Ze ld in . "The Foundations
f o r AXES:
p le teness o f Cont ro l ,I' Doc. R-964. Char les S L i r k
Draper Laboratory, I nc . , Cambridge, MA, Flarch 1976.

8. Guttag, J . "The S p e c i f i c a t i o n and A p p l i c a t i o n
t o Programming o f Abs t rac t Data Types." U n i v e r s i t y
of Toronto Technical Report CSRG-59, Sept. 1975.

9, Hoare, C,A.R, "An Axiomat ic Approach t o Compu-
t e r Programmi ng , 'I CACM 12, Oct , 1969.

A S p e c i f i c a t i o n Languaged Based on Com-

V . SUMMARY

A system i s de f i ned i n terms o f i t s o v e r a l l en-
v i ronment and w i t h respec t t o i t s p o s i t i o n w i t h i n
i t s o v e r a l l development process. An e r r o r i s an un-
in tended phenomenon.
e i t h e r a se l f - con ta ined bas is (i . e . , w i t h respec t t o
i t s o v e r a l l environment) o r w i t h respec t t o i t s
p o s i t i o n i n the development process. Once we under-

A system can have an e r r o r on

662

