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ABSTRACT 

Issues of r e l i a b i l i t y  i n c l u d e  i d e n t i f i c a t i o n  o f  e r -  
r o r s  i n  r e l a t i o n  t o  a p a r t i c u l a r  o b j e c t  system. Ex- 
per ience i n  l a r g e  system developments i n d i c a t e s  t h a t  
o b j e c t i v e  e r r o r  i d e n t i f i c a t i o n  i s  n o t  a s imple pro- 
cedure. P a r t i c u l a r  aspects o f  e r r o r  i d e n t i f i c a t i o n  
and a n a l y s i s  f o r  a la rge ,  complex, r e a l - t i m e  system 
a r e  addressed. I n  a d d i t i o n ,  some measures taken, 
as a r e s u l t  o f  t h i s  experience, t o  address these 
issues o f  r e l i a b i l i t y  w i t h  respec t  t o  system d e f i n i -  
t i o n  a r e  discussed. 

I .  INTRODUCTION 
I n  o rder  t o  t a l k  about r e l i a b i l i t y ,  we need t o  

t a l k  about systems and e r r o r s  and systems which have 
e r r o r s  o r  systems which do n o t  have e r r o r s .  
r e l i a b l e  system i s  a p r e d i c t a b l e  system; i t  does ex- 
a c t l y  what i t  i s  intended t o  do. J u s t  how r e l i a b l e  
a system i s  depends on t h e  e x t e n t  t o  which t h a t  sys- 
tem i s  e r r o r - f r e e .  But, what i s  a system? What i s  
an e r r o r ?  And what does i t  mean f o r  a system t o  
have an e r r o r ?  

The s t r u g g l e  f o r  answers t o  these quest ions i s  
n o t  j u s t  a mere exerc ise  i n  a p h i l o s o p h i c a l  d i s -  
course, b u t  r a t h e r  t h e  outcome o f  such an exerc ise  
cou ld  have fa r - reach ing  p r a c t i c a l  i m p l i c a t i o n s  i n  a 
t y p i c a l  l a r g e  system development process. Th is  pa- 
per  discusses t h e  i m p l i c a t i o n s  we experienced w i t h  
a l a r g e  system development as a r e s u l t  o f  having 
gone through such an exerc ise .  

Consider a system as an assemblage o f  o b j e c t s  
u n i t e d  by some form o f  r e g u l a r  i n t e r a c t i o n  o r  i n -  
terdependence; a system i t s e l f  c o u l d  be an o b j e c t  
w i t h i n  another system. (For example, a so f tware  
system, a hardware system, and a man-in-the-loop 
a r e  n o t  o n l y  systems, as i n d i v i d u a l s ;  b u t  they  
c o u l d  a l s o  be o b j e c t s  w i t h  respec t  t o  an o v e r a l l  
system w i t h i n  which t h e  i n d i v i d u a l  systems a l l  r e -  
s i d e . )  
a re  u n i t e d  cou ld  determine j u s t  how r e l i a b l e  a par-  
t i c u l a r  system i s .  

A p a r t i c u l a r  system may be considered from many 
p o s s i b l e  v iewpo in ts  ( o r  development l a y e r s ) .  I f ,  
f o r  example, one i s  concerned w i t h  a d e f i n i t i o n  o f  
a system, i t  i s  viewed w i t h  r e s p e c t  t o  what i t  i s  
supposed t o  do. I f  one i s  concerned w i t h  a d e s c r i p  
t i o n  o f  a system, i t  i s  viewed w i t h  respec t  t o  whe- 
t h e r  o r  n o t  t h e  d e f i n i t i o n  i s  e f f e c t i v e l y  conveyed. 
I f  one i s  concerned w i t h  t h e  implementat ion o f  a 
system, i t  i s  viewed w i t h  respec t  t o  whether o r  n o t  
the  system i s  cons t ruc ted  t o  do what i t  i s  supposed 
t o  do. I f  one i s  concerned w i t h  t h e  execut ion  o f  a 
system, i t  i s  viewed w i t h  respec t  t o  whether o r  n o t  

For  a 

The very  mechanism by which these o b j e c t s  

t h e  system does what i s  i s  supposed t o  do. Whereas 
t h e  d e s c r i p t i o n  and implementat ion l a y e r s  o f  a sys- 
tem represent  s t a t i c  views, t h e  d e f i n i t i o n  and exe- 
c u t i o n  l a y e r s  o f  a system represent  dynamic views. 

J u s t  as software, as a system, cou ld  be consid- 
e red  as an o b j e c t  i n  a l a r g e r  system, each viewpoint 
o f  t h e  so f tware  system, as a system, cou ld  be con- 
s idered  as an o b j e c t  w i t h  respec t  t o  t h e  o v e r a l l  de- 
velopment process o f  t h e  so f tware  system as a sys- 
tem. 
c o r r e c t  focus i s  necessary w i t h  respec t  t o  bo th  a 
component w i t h i n  a g iven system and a p a r t i c u l a r  de- 
velopmental v iewpo in t  o f  t h a t  component be fore  t h a t  
o b j e c t  as a system can be discussed i n  terms o f  i t s  
r e l i a b i l i t y .  
i d e n t i f y  t h e  o b j e c t  i n  quest ion,  we cou ld  be d i s -  
cussing d i f f e r e n t  o b j e c t s  when we t h i n k  we are  ta lk -  
i n g  about t h e  same ones, o r  d iscuss ing  a p a r t i c u l a r  
o b j e c t  w i t h  an i n c o r r e c t  assessment o f  t h e  informa- 
t i o n  concerning t h a t  o b j e c t .  Thus, we l l - in ten t ioned 
changes f o r  t h e  sake o f  r e l i a b i l i t y  cou ld  n o t  o n l y  
do no th ing ,  b u t ,  i n  f a c t ,  they  c o u l d  make t h i n g s  
worse. A case i n  p o i n t  i s  t h e  o f t e n  misunderstood 
s e t  o f  o b j e c t s  c a l l e d  so f tware  systems. 

r e l i a b i l i t y  o f  a p a r t i c u l a r  software system i s  de- 
termined. If, f o r  example, so f tware  i s  considered 
t o  i n c l u d e  i n p u t s  from e v e r y t h i n g  i n  t h e  system w i t h -  
i n  which a computer program i s  t o  res ide ,  t h e  r e l i -  
a b i l i t y  w i l l  no doubt be d i f f e r e n t  than i f  t h e  s o f t -  
ware i s  considered t o  be o n l y  t h e  computer program 
i t s e l f  ( i .e . ,  a s e t  of i n s t r u c t i o n s  encoded i n  some 
manner fo r  a p a r t i c u l a r  computer). O r ,  i f  so f tware  
i s  considered t o  i n c l u d e  t h e  s p e c i f i c a t i o n  o f  t h e  
computer program, t h e  r e l i a b i l i t y  o f  t h e  so f tware  
w i l l  be, no doubt, d i f f e r e n t  than i f  t h e  so f tware  
i s  considercd t o  i n c l u d e  o n l y  t h e  implementat ion o f  
t h e  s p e c i f i c a t i o n  ( i . e . ,  t h e  computer program). 
Once having determined t h e  o b j e c t  i n  quest ion,  f rom 
a software standpoint ,  i t  i s  then necessary t o  under- 
stand conceptua l l y  t h e  concepts o f  a so f tware  e r r o r  
and t h e  software hav ing  an e r r o r .  Such was t h e  case 
on t h e  A p o l l o  p r o j e c t ,  where t h e  issues  o f  r e l i a b i l -  
i ty were o f  uppermost concern1 . 

The quest ions and corresponding answers which 
f o l l o w  summarize o u r  a t tempt  t o  understand how re-  
l i a b l e  t h e  on-board "sof tware" was a f t y  i t  had 
f l o w n  on a l l  o f  i t s  " r e a l  s imu la t ions .  

The impor tan t  p o i n t  t o  emphasize i s  t h a t  a 

I f  i t  i s  n o t  p o s s i b l e  t o  p r o p e r l y  

B a s i c a l l y ,  software has t o  be d e f i n e d  be fore  t h e  

11. RELIABILITY ISSUES: QUESTIONS AND ANS!IERS 
Question: What is a sof tware  error? 
Answer: 
menon i n  e i t h e r  t h e  s p e c i f i c a t i o n  f o r  a computer 
program o r  t h e  computer program i t s e l f .  

A so f tware  e r r o r  was an unintended pheno- 

There were 
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two major kinds of errors .  One kind was determined 
by analyzing a system ( o r  a s e t  of sub-systems) on 
a stand-alone basis. For example, i f  the specifica- 
tion had  an inconsistency between i t s  functions or  
i f  the computer program had a data conf l ic t ,  such 
errors  could be found by analyzing only the system 
in question. Certain checks were made for complete 
ness, consistency, and non-redundancy with respect 
t o  a self-contained system. A t  tha t  time, there was 
no method t o  guarantee t h i s  type of interface cor- 
rectness. The other kind of e r ror  was determined 
by checking one development layer with the layer 
from which i t  evolved. T h u s ,  fo r  example, a compu- 
t e r  program was compared t o  i t s  specif icat ion;  the 
specification was compared t o  the designer 's  intent .  
I t  was possible t o  check for  inconsistencies and 
incompleteness between, say, a specification and a 
computer program although we d i d  n o t  have methods 
which guaranteed traceabi 1 i ty  between 1 ayers. And, 
of course, we could n o t  guarantee tha t  a specifica- 
t ion was consistent o r  complete w i t h  respect t o  the 
original intent  of the designer. (Thirteen percent 
o f  the errors  during development f e l l  into this cate- 
gory, while 75 percent of the development err0 s were 

Today, we support the solution t o  the "13 percent 
problem" by providing techniques which are  intended 
t o  eliminate other sources of problems. 

due t o  logical incompleteness or  inconsistency 5 .)  

How do you determine i f  an unintended phenomenon is 
an error from a practical standpoint, and once hav- 
ing done so, how do you weigh the seriousness of the 
error i n  the context o f  overall re l iab i l i t y?  
There were catastrophic errors  which could have 
aborted a f l i g h t ,  errors  which were worrisome t o  
the success of a f l i g h t ,  and errors  which were mere- 
ly  an annoyance. Other problems were o f f i c i a l l y  re- 
corded as "funny l i t t l e  things." They weren't pro- 
blems per se ,  b u t  ye t ,  no one qui te  understood why 
they happened, since they d idn ' t  make sense in the 
context of known fac ts  about the specification or 
the computer program. Sometimes there were border- 
l ine  cases in t h a t  the difference in def ini t ion or  
interpretat ion o f  the software could determine whe- 
ther  or  n o t  a potential  problem was a real error .  
The determination of these categories was often l e  
up t o  engineering judgement; others , however, were 
more obvious and could be expl ic i t ly  determined. 
I f  the computer program "doesn't work" because the 
specification i s  wrong, i s  the computer program un 
reliable? 
The software was unreliable i f  the software speci- 
f ica t ion  was unreliable.  W i t h  respect to  the spec 
f ica t ion ,  however, the computer program was deter-  
mined t o  be rel iable .  

t 

I f  an error i s  found i n  the computer program during 
development and a decision i s  made not t o  f i x  the 
error but t o  use a "workaround" (i .e. , something 
that e i ther  prevented i t s  happening or eased or re- 
moved i t s  e f f e c t )  t o  compensate f o r  the error, i s  
there an error i n  the specification with the new 
recorded anomaly and workaround, or does the record- 
ing change the specification? I s  there an error i n  
the computer program? I f  the computer program i s  
i n  execution and the error i n  question takes place 
due t o  the error o f  ignoring the workaround, what 
system does t h i s  error reside in? 
Even though o f f i c i a l l y  errors  were recorded as 

anomalies, unofficially the recording of an e r ror  
w i t h  a workaround, rather than fixing the e r ror ,  was 
an update t o  the specif icat ion.  
moved, in essence, the anomaly in question. Thus, 
i f  the e r ror  took place in f l i g h t  with a workaround, 
t h i s  was not an e r ror  t o  be recorded, since nclt  only 
was i t  o f f i c i a l l y  recognized before f l i g h t ,  b u t  i t  
was also sanctioned t o  f l y  with special provision. 
I f ,  however, the e r ror  took place and the workaround 
was ignored, the software system i t s e l f  was n o t  con- 
sidered t o  have an e r r o r ,  b u t  ra ther  the user ,  who 
ignored the workaround, was considered t o  be 'in e r -  
ror. 

Such an update re- 

I f  an error i s  o f f i c i a l l y  known before f l i g h t  (that 
i s ,  i t  i s  recorded with the spec i f ica t ion) ,  b(it an 
o f f i c i a l  decision i s  made not t o  f i x  i t  or not t o  
provide a workaround, and it occurs dur.ing f l i g h t ,  
i s  it a software error? 
Such a phenomenon would not have been recorded as 
an e r ror ,  since a decision was made t o  offici311y 
sanction i t s  existence in the software. Thus, i t  
became par t  of the specif icat ion.  
I f  an algorithm i n  a specification i s  incorrect, but 
the algorithm i n  the corresponding computer program 
i s  correct, i s  the computer program i n  error? I s  
the specification i n  error? Or i s  only the design- 
e r ,  who created the specification i n  the f i r s t  
place, i n  error? 
Technically speaking, the computer program would 
have been in e r ror .  Pract ical ly  speaking, if i t  
was feas ib le ,  the specification would have been up- 
dated t o  conform with the computer program. The 
specification was in e r ror  i f  the algorithm c o u l d  
be determined t o  be incorrect ,  on a stand-alcne 
basis,  within the specif icat ion.  Otherwise, the 
e r ror  was the designer 's ,  alone. 
I f  an error i s  o f f i c i a l l y  known before f l ight:  and 
a decision i s  made not t o  f i x  i t ,  but the computer 
program i s  f ixed anyway, i s  t h i s  an error i n  the 
computer program? 
To be consis tent ,  the computer program was i n  error ,  
because i t  was inconsistent with the specif icat ion.  
B u t  an af ter- the-fact  "f ix"  was sometimes corisidered 
be t te r  t h a n  an already sanctioned anomaly. 
times, f ixes  were frowned upon since last-minute 
attempts t o  f i x  an e r ror  often e i t h e r  d i d n ' t  f i x  
the program or made i t  worse. The resolution of 
the dilemma of a "good" f i x  was l e f t  t o  management, 
who e i ther  happily adjusted the specifi:cation by 
cancelling the anomaly o r  became angry a t  the pro-  
gram designer for  his misguided good intentions,  
and forced the designer t o  remove the i l l ega l  f i x .  
Sometimes specifications are provided i n  the form 
o f  o f f i c i a l  documentation. Often, however, sn i m -  
plementation i s  based upon well-known assumptions 
that cannot be found i n  writing anywhere. Is i t  an 
error i f  the implici t  information i s  followed? 
What i f  it i s  not followed? 

Other 

Early in the project ,  implici t  information made up 
the major par t  of a specif icat ion;  i t  was con- 
sidered an error  i f  i t  was not followed. Later, i f  
there was b o t h  implici t  information and writ ten in- 
formation on the same subject ,  the writ ten infor- 
mation overrode the word-of-mouth information, 
usually. 
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I f  there i s  an error i n  the input t o  the computer 
program, is the data  considered p a r t  o f  the computer 
program when the r e l i a b i l i t y  of that program i s  be- 
ing measured? 
I f  i t  was assumed t h a t  t he  f i n a l  r e s p o n s i b i l i t y  o f  
l oad ing  c o r r e c t  i n p u t s  t o  t h e  computer program was 
designated t o  e i t h e r  the  m iss ion -con t ro l  engineers, 
the astronauts, o r  t he  hardware, then the  problems 
r e s u l t i n g  from wrong inpu ts  ( e i t h e r  i n s t r u c t i o n s  o r  
data)  were n o t  software e r r o r s .  The except ion t o  
t h i s  r u l e  was i f  the  computer program was requ i red  
t o  a l l o w  and f i l t e r  bad inpu ts .  
I f  certain areas o f  the computer program are secure 
from the user and a lock mechanism prevents him 
from changing the program to  f i x  an error during 
f l i g h t ,  i s  the philosophy of having a lock mechanism 
i n  error? 
Cer ta in l y ,  t he  e r r o r  t h a t  was locked ou t  from being 
f i x e d  was i n  e r r o r .  

Conversely, i f  secure mechanisms are not implemented 
and the user inadvertently causes an error because 
he i s  not locked out ,  i s  the philosophy o f  having a 
non-lock mechanism i n  error or i s  the user i n  error- 
-or both? 
An extreme case o f  bad i n p u t s  was when an operator  
( l i k e  an as t ronau t )  o f  t he  computer program inad- 
v e r t e n t l y  changed erasable* i n s t r u c t i o n s  i n c o r r e c t -  
l y .  Cer ta in l y ,  i n  t h i s  case, t he  user  was respon- 
s i b l e  fo r  making an e r r o r .  I t  was n o t  c l e a r  i f  the  
non-lock mechanism approach was i n  e r r o r .  As long 
as the re  was an a v a i l a b l e  mechanism t o  change eras- 
ables and t o  send c o n t r o l  t o  these erasables, cata-  
s t roph ies  were poss ib le .  Yet, t he  computer program 
could n o t  be h e l d  responsib le .  
conc lus ion t h a t  such dangerous p r a c t i c e s  should 
never be allowed. Yet, i f  the re  had been a r e a l  
e r r o r  i n  the software, t h i s  mechanism cou ld  have 
saved a f l i g h t .  (And, i n  f a c t ,  t h i s  very mechanism 
d i d  save a f l i g h t  i n  the case o f  an e r r o r  from a 
system i n t e r f a c i n g  w i t h  the software.) 

HOW can re l iab i l i t y  be defined until the philosophy 
of error detection and recovery i s  defined? What i s  
the relationship between r e l i a b i l i t y  and error de- 
tection and recovery? Should the specification de- 
termine whether or not error detection and recovery 
should ex is t  a t  a l l  or i s  t h i s  the responsibility o f  
the computer program? I f  the specification i s  re- 
sponsible, should the specification include ap- 
proaches for error detection and recovery? 

One cou ld  draw the  

I n  the e a r l y  days o f  the p r o j e c t ,  many sof tware en- 
g ineers l obb ied  t o  i nco rpo ra te  more e r r o r  checking 
procedures i n t o  the software. For example, i t  was 
considered by some t h a t  a l l  i n p u t  data should be 
checked and refused i f  i t  was n o t  w i t h i n  predeter-  
mined l i m i t s .  The ast ronauts and o the r  users con- 
s idered such measures unnecessary, s ince  they as- 
sumed t h a t  the ast ronauts would know the  procedures 
so w e l l  t h a t  t he re  was zero chance f o r  e r r o r .  Un- 
f o r t u n a t e l y ,  understanding the sof tware was n o t  
enough t o  prevent  human e r r o r s .  The more conserva- 
t i v e  phi losophy was l a t e r  v ind i ca ted  when, on actu-  
a l  f l i g h t s ,  no t  o n l y  the  ast ronauts bu t  o thers made 

Most o f  t h e  i n s t r u c t i o n s  i n  t h e  computer progranl 
were hard-wired. But t he re  was a small  s e t  o f  i n -  
s t r u c t i o n s  t h a t  was not .  This s e t  was c a l l e d  e r -  
asable memory (as opposed t o  f i x e d  memory). 

* 

r e a l - t i m e  mistakes. The "no-error  checking" p h i l -  
osophy accounted f o r  t he  m a j o r i t y  o f  recorded system 
e r r o r s .  O f  course, t h e r e  were t r a d e o f f s  t o  consider; 
t he  more e r r o r  l o g i c  incorporated i n  the  software, 
t he  more chance f o r  e r r o r s  from the  a d d i t i o n a l  so f t -  
ware. Thus, a ca re fu l  ana lys i s  was made t o  de te r -  
mine j u s t  where the  c r i t i c a l  e r r o r  de tec t i on  l o g i c  
should be incorporated.  ( L a t e r  we devised techn i -  
ques which addressed problems on a system-wide basis 
and a l o t  o f  prima donna l o g i c  was no longer  neces- 
sa ry . )  I n p u t  e r r o r s ,  which caused problems i n  the 
software, were considered as sof tware e r r o r s  o n l y  
i f  the  s p e c i f i c a t i o n  prov ided f o r  t he  sof tware t o  
p r o t e c t  i t s e l f  aga ins t  these e r r o r s .  

I f two errors cancel each other, i s  there an error? 
No. However, i f  a subsystem was a c t i v e  w i t h  o n l y  
one o f  the e r r o r s ,  t h a t  e r r o r  was counted. 
I f  an error i s  not detected during f l i g h t ,  but i t  
i s  determined that i t  should have occurred, i s  it 
t o  be recorded as part o f  the errors which occurred 
on that particular f l i g h t ?  
Unresolved. 

I s  "bet ter  the enemy o f  good" i n  providing f o r  pro- 
tect ion against errors? 
When adding redundancy o r  backup con f igu ra t i ons ,  
t he re  were more t r a d e o f f s  t o  consider .  There was a 
t ime when we were cons ide r ing  systems f o r  t he  ast ro-  
nauts t h a t  were so e r r o r - p r o o f  t h a t  we had f i n a l l y  
created the  p e r f e c t  system f o r  p reven t ing  bad i n -  
puts .  There was one f l a w  i n  the  system however. 
We had n o t  o n l y  prevented the ast ronaut  from making 
any e r r o r s ,  we had prevented him from doing any- 
th ing .  
prevent  e r r o r s  any b e t t e r  than the  pr imary system 
( i . e . ,  gener ic  e r r o r s ) .  A wrong s p e c i f i c a t i o n  f o r  
a pr imary and secondary system, f o r  example, cou ld  
r e s u l t  i n  two i n c o r r e c t  computer programs. (Re- 
Sources a re  o f t e n  conpromised i n  the  developnent of 
a pr imary system for t h e  development o f  a backup 
system. This  cou ld  jeopard ize the r e l i a b i l i t y  o f  
t he  pr imary system. Given a choice, i t  i s  b e t t e r ,  
f o r  example, t o  have a pr imary system t h a t  i s  99 
percent  r e l i a b l e  over  a pr imary system t h a t  i s  50 
percent  r e l i a b l e  and a secondary system t h a t  i s  50 
percent  r e l i a b l e ;  f o r  i n  t h e  l a t t e r  case, safety  
could be compromised f o r  s a f e t y ' s  sake.) 

I f  there i s  a "problem" i n  the computer program and 
i t  i s  not Clear if i t  originated i n  the specifica- 
t ion ,  t o  which system i s  the error attributed? 
Here, the s p e c i f i c  source o f  the e r r o r  would be r e -  
corded as unknown ( i . e .  , wi th  respec t  t o  e i t h e r  the  
s p e c i f i c a t i o n  o r  the computer program). 
an e r r o r  would have been recorded f o r  t he  sof tware.  

There werealso backup systems t h a t  cou ld  not 

However, 

When more than one specification ex is t s  and they 
conf l ic t  with each other, which is i n  error? 
Once, the re  was a quest ion as t o  whether the  com- 
p u t e r  program i n t e r f a c e  s p e c i f i c a t i o n  o r  t he  simu- 
l a t o r  program s p e c i f i c a t i o n  was c o r r e c t .  
program abor ted du r ing  a s imu la t i on  by one of t h e  
independent v e r i f i c a t i o n  con t rac to rs .  I t  was de- 
termined by severa l  exper ts  t h a t  t he  s imu la to r  
should be f i x e d  so t h a t  the f l i g h t  program would 
n o t  abo r t ,  
gram then worked b e a u t i f u l l y  du r ing  t h e  next -  sjmu- 
l a t i o n ,  b u t  i t  aborted i n  a r e a l  unmanned f l i g h t .  

The f l i g h t  

The s imu la to r  was f i x e d ,  t h e  f l i g h t  pro- 
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This i s  a good example of a generic e r ro r  being i n -  
troduced into a system which had pref l igh t  develop- 
mental backup capabi l i ty .  As t o  which spec i f ica t ion  
was i n  e r ro r ,  when there i s  a conf l i c t ,  there i s  no 
easy answer unt i l  careful analysis i s  performed; and 
even then, the existence of an e r ro r  must be decided 
upon in terms of the i n i t i a l  in ten t  of the designer. 
If several errors take place and they are la t e r  dis- 
covered to  be caused by a root source, are a l l  of 
these errors recorded i n  the determination of the 
re l iab i l i t y  of the system? 
No. Errors, o ther  than the root source e r ro r s ,  were 
only recorded fo r  descr ip t ive  purposes in the analy- 
s is  of the root e r ro r .  There were times, however, 
t ha t  i t  was not c l ea r ,  unt i l  much l a t e r ,  t ha t  cer- 
t a in  e r ro r s  were connected. I t  is a l so  no doubt 
t rue  tha t  there were e r ro r s  which were connected t h a t  
were never found. 
I f  an error took place i n  the computer program dur- 
ing f l i g h t ,  and a system error and detection mechan- 
ism took care o f  the e f f e c t  of that error, would 
t h i s  have been a recorded error? 
Yes. Sometimes the same mechanism tha t  would have 
taken care of a software problem would a l so  resolve 
problems from other systems. 
human e r r o r  was found and recovered by the software, 
the s ftware was blamed because i t  reported the bad 
news!' Although there were no recorded software e r -  
rors d u r i n g  f l i g h t  i n  the on-board f l i g h t  software, 
there were several overall  system e r ro r s  within 
which the software resided. 
affected the software, b u t ,  fortunately,  the so f t -  
ware was able to  recover or t o  be recovered in every 
case. 

In one case where a 

Many of these e r rors  

111. OBSERVATIONS 
Of these overall system e r ro r s ,  73 percent were 

real-time human e r ro r s ,  92 percent were recoverable 
by using software, 40 percent were known about a- 
head of time b u t  the workaround was inadvertently 
not used, and 100 percent could have been prevented 
by a more encompassing philosophy and too ls  t o  sup-  
port  i t .  

The analysis of the Apollo system problems during 
actual f l i g h t s  pointed out t h a t  the philosophy of 
how one goes about defining system relationships 
cannot be overemphasized. The type of re la t ionships  
can determine not only how re l i ab le  the in te r faces  
are ,  b u t  a l so  how f l ex ib l e  a system i s  in order t o  
make new decisions with f a s t  response times, both 
d u r i n g  development and i n  real  time. The need fo r  
t h i s  type of f l e x i b i l i t y  was often crucial  during 
off-nominal mission conditions.  

IV. QUALITY OF SPECIFICATION 
The d i f f i c u l t y  in measuring the r e l i a b i l i t y  of 

software i s ,  i n  par t ,  because of an inab i l i t y  to  
adequately define what i t  is a system is intended t o  
do. 
t i t y  of t h a t  something by comparing i t  t o  some stan- 
dard o r  u n i t .  The problem of measuring a soitware 
system is well s t a t ed  by Manna and Waldinger : 

To determine whether a program i s  cor rec t ,  
we must have some way of specifying what 
i t  i s  intended t o  do; we cannot speak of 

To measure something is  t o  determine the quan- 

the correctness of a program in i so l a t ion ,  
b u t  only of i t s  correctness with respect 
t o  some specification. 

5 With respect t o  t h e i r  own work, Avizienis and Chen 
s t r e s s  the importance of a r e l i ab le  software srseci- 
f ica t ion  as a standard uni t  of measure for  devplop- 
i ng equi Val en t  a1 gori thms . 

I f  t o  measure the r e l i a b i l i t y  of a software sys- 
tem we need an adequate spec i f ica t ion ,  we are  faced 
with the problem of measuring the r e l i a b i l i t y  of the 
spec i f ica t ion  i t s e l f .  In t h i s  case ,  i t  i s  impcssi- 
ble to  completely measure the in ten t  of a desicner;  
we can a t  l e a s t  measure logical completeness ard 
consistenty,  i . e . ,  qua l i ty  assurance. 

Re1 i abi 1 i ty  , i n  the sense of qua l i ty  assurance , 
i s  addressed i n  the spec i f ica t ion  language, AXLS6, 
by providing mechanisms t o  define data types ( i n  
order t o  ident i fy  objec ts ) ;  functions ( i n  order t o  
r e l a t e  objects of types) ;  and s t ruc tures  ( i n  o)-der 
t o  r e l a t e  func t ions) .  The aim i s  t o  be able t o  de- 
f ine  a system so tha t  we can automatically che:k i n -  
t e r face  spec i f ica t ions  s t a t i c a l l y .  The foundations 
of AXES are based on a s e t  of contro axioms d2rived 

lu s t r a t e s  t h i s  evolvement by the connecting dashed 
l i n e s . )  Each axiom describes a re la t ion  of immedi- 
a t e  domination with respect t o  a functional system. 
We ca l l  the u n i o n  of these re la t ions  control.  From 
these axioms, a s e t  of Fhree primitive control s t ruc-  
tu res  have been derived . These three control 
s t ruc tures  ident i fy  control schemas on s e t s  of ob- 
j e c t s .  From the assumption tha t  we can ident i fy  an 
object o r  a s e t  of ob jec ts ,  a mechanism fo r  dcfining 
an algebra fo r  each d i s t i n c t  s e t  of objects i s  pro- 
vided in AXES. Each algebra takes the form o f  a 
s e t  of axioms t h a t  r e l a t e  operations applied 1.0 ob- 
j e c t s  of a type. 

from empirical data of  large systems 1 . ( F i g .  1 i l -  

I m r m , , * * r , .  
J 

', U U,: - - _ _ _ -  
U: Qual!," l r r v r r n c c  Ch?CLI " i l h  

RCI"ECI to R X l S  

To form a system, defined as  a function, icontrol 
s t ruc tures  a re  defined i n  terms of tRe primitive 
s t ruc tures  ; operations a re  defined e i t h e r  imp1 i c i  t l y  
by deriving them mathematically from the axioms on 
a type or exp l i c i t l y  i n  terms of control s t r J c tu re s  
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using already defined operat ions on a type. When 
an opera t ion  i s  de f ined both i m p l i c i t l y  and e x p l i c i -  
t ly ,  we can crosscheck the  i n t e n t  o f  the  spec i f i ca-  
t i o n  f o r  correctness (Fig.  1 ) .  

AXES uses the  funct ional  n o t a t i o n  

Y = f (x )  
where x i s  the  input ,  y i s  the  output,  and f i s  the  
opera t ion  app l ied  t o  x t o  produce y. 

I n  at tempt ing t o  def ine a system as a func t ion ,  
we already have incorporated an element o f  r e l i -  
a b i l i t y  i n  t h a t  we a s s e r t  t h a t  f o r  every value o f  
"x"  we expect t o  produce one and o n l y  one value f o r  "y". 
produce the  same r e s u l t  each t ime we apply f t o  a 
p a r t i c u l a r  value. 

Now, we must incorpora te  i n t o  our  d e f i n i t i o n  a 
means t o  i d e n t i f y  a l l  o f  the  acceptable inputs  and 
outputs and a means t o  descr ibe the  r e l a t i o n s h i p  be- 
tween the  inputs  and outputs. I n  AXES, each i n p u t  
and output value i s  associated w i t h  a p a r t i c u l a r  
s e t  o f  values. Each p a r t i c u l a r  s e t  of values, c a l l -  
ed a data type, i s  de f ined by means of  an algebra. 
The syntax f o r  d e f i n i n g  each algebra i s  s i m i l a r  t o  
t h a t  used by Guttag8, b u t  the  semantics associated 
w i t h  each a lgebr  i s  s i m i l a r  t o  the  concepts de- 
sc r ibed by Hoare . The semantics f o r  our algebras 
assumes the existence o f  objects.  That i s ,  when we 
def ine  a system, as i n  ( l ) ,  we assume the  values o f  
x and y t o  e x i s t ,  and t h a t  when f i s  app l ied  t o  x, 
y corresponds t o  the value x. 

I n  many systems, e s p e c i a l l y  l a r g e  ones, i t  i s  o f -  
ten  n o t  r e a d i l y  apparent which i n p u t  values corres- 
pond t o  the  system's intended f u n c t i o n  u n t i l  the  
system i s  decomposed i n t o  smal le r  pieces. Although 
we s t a r t  w i t h  a l a r g e  s e t  o f  "seemingly" acceptable 
!slues, a p r e d i c t i v e  system must be ab le  t o  i d e n t i f y  

t r u l y "  acceptable inputs  o r  t o  produce an ind ica-  
t i o n  t h a t  a p a r t i c u l a r  f u n c t i o n  w i l l  n o t  be ab le  t o  
perform i t s  intended func t ion .  To i d e n t i f y  a sys- 
tem's intended func t ion ,  we make use o f  a d i s t i n -  
guished value which we c a l l  Reject .  This d i s t i n -  
guished value i s  a member o f  each data type (Fig.,?). 
If an i n p u t  value corresponds t o  the value Reject, 
as an output,  then the  f u n c t i o n  app l ied  t o  t h a t  i n -  
p u t  i s  s a i d  t o  have detected an e r r o r .  A f u n c t i o n  
app l ied  t o  an i n p u t  value o f  which Reject  i s  a com- 
ponent (e.g. , the  value (1  , 3, Re jec t ) )  e i t h e r  
assign Reject  as an ou tpu t  value, o r  may recover" 
from the e r r o r  by assigning an ou tpu t  value o ther  
than Reject .  

That i s ,  we expect the system t o  p r e d i c t a b l y  

4 

Once we have i d e n t i f i e d  a l l  acceptable inputs  and 
outputs o f  our system, we need a means t o  descr ibe 
the  r e l a t i o n s h i p  between the  i n p u t  and output,  
sometimes c a l l e d  the performance o f  the  func t ion .  
We can r e l a t e  i n p u t  t o  output by a s s e r t i n g  r e l a t i o n -  
ships about our  system i n  terms o f  a l ready de f ined 
operat ions and already de f ined r e l a t i o n s h i p s  on a 

s e t  of operat ions.  Re la t ions  on a s e t  o f  operat ions 
g i v e  r i s e  t o  a h i e r a r c h i c a l  system s t r u c t u r e .  Th is  
means t h a t  when our d e f i n i t i o n  i s  complete, the  
s t r u c t u r e  of our  system w i l l  look something l i k e  the  
s t r u c t u r e  appearing i n  Fig.  3. 

A t  each node i n  our  h ie rarchy  we s h a l l  p u t  a 
func t ion  w i t h  the  i n t e n t  t h a t  a t  any l e v e l  o f  our  
h ie rarchy  (a l e v e l  i s  a s e t  o f  immediate dominated 
nodes w i t h  respect t o  a p a r t i c u l a r  node, sometimes 
c a l l e d  a step o f  ref inement) ,  we can r e l a t e  t h e  
func t ions  a t  t h a t  l e v e l  t o  the  f u n c t i o n  a t  the  node 
immediately dominating them. 

r ( A h  

Fig.: H i e r a r c h i c a l  System St ructure  - 
We need a s e t  o f  r u l e s  t o  determine a l e v e l ,  and 

a s e t  o f  r u l e s  t o  determine whether we want t o  cre- 
a t e  a l e v e l  ( o r  stop decomposing). 

To determine a l e v e l ,  we want a l l  the  func t ions  
a t  the  nodes o f  a l e v e l  t o  be necessary and s u f f i c i -  
e n t  t o  replace the f u n c t i o n  a t  the  node d i r e c t l y  
c o n t r o l l i n g  these func t ions  (F ig .  4) .  This w i l l  
assure us t h a t  we w i l l  ge t  no more o r  no l e s s  than 
we want, i .e. ,  t h a t  our l e v e l  i s  l o g i c a l l y  complete. 

F i g .  4:  Level Completeness 

completely rep lac ing  the  f u n c t i o n  a t  t h e  node d i -  
r e c t l y  above it, we must be able t o  d e f i n e  each 
p o i n t  a t  which we want t o  stop. We stop when we 
reach a f u n c t i o n  whose behavior, i .e . ,  i t s  i n p u t  
and output r e l a t i o n ,  has been de f ined i n  terms of 
o t h e r  operat ions on a de f ined type, and our s p e c i f i -  
c a t i o n  i s  complete when we determine each stopping 
p o i n t .  Now, i f  we know the behavior o f  each func- 
t i o n  a t  a bottom l e v e l  and how i t  r e l a t e s  t o  the  
o t h e r  func t ions  a t  t h a t  same l e v e l  , we know the  be- 
hav io r  o f  the  node d i r e c t l y  above it. And w i t h  the  
same reasoning, we then know the  behavior o f  the  
func t ions  a t  each l e v e l  successively c l o s e r  t o  the  
r o o t ,  o r  top  node. And w i t h  the  same reasoning, we 
end up w i t h  knowing the  behavior o f  the  r o o t  func- 
t i o n  i t s e l f .  Thus, the behavior o f  the  top  node i s  
u l t i m a t e l y  determined by the  behavior o f  the  c o l -  
l e c t i v e  s e t  o f  bottom nodes (F ig .  5 ) .  

Now we a l s o  want t o  assure l o g i c a l  consistency 
fo r  a l e v e l .  Since our i n t e n t ,  i n  the  end, i s  t o  
understand the behavior o f  the  f u n c t i o n  a t  the  top  
node, every t ime we t a l k  about a value o f  t h a t  func- 
t i o n  we want t o  assure outselves t h a t  we are  t a l k i n g  
about the  same value a t  the l e v e l  d i r e c t l y  dominated 
by t h a t  func t ion ;  t h a t  i s ,  we want t o  be ab le  t o  

As we cont inue t o  b u i l d  our hierarchy, each l e v e l  
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w: Endpoint Completeness 

determine which values match up w i t h  which func- 
t i o n s .  To t a l k  about a va lue  we use i t s  name, o r  
va r iab le .  
va r iab les  (F ig .  6 )  and ou tpu t  va r iab les  (F ig .  7 ) .  

We want t o  be cons is ten t  about i n p u t  

U: Tracing Input Names w: Tracing Output Names 

To avo id  s p e c i f i c a t i o n  e r r o r s  i n  naming values, a 
p a r t i c u l a r  name i s  always assoc ia ted  w i t h  the  same 
va lue  as we t r a v e l  down the  h ie rarchy .  
If our  f u n c t i o n  i s  in tended t o  be executed on a 

computer, we want t o  be ab le  t o  determine which 
func t i ons  a r e  more impor tan t  than o thers .  
t r a v e l  down the  h ie rarchy ,  a f u n c t i o n  i s  always more 
impor tan t  than the  func t i ons  a t  t h e  l e v e l  dominated 
by t h a t  f unc t i on ,  and a t  a p a r t i c u l a r  l e v e l  each 
f u n c t i o n  i s  assigned an importance w i t h  respec t  t o  
each o t h e r  f u n c t i o n  a t  t h a t  l e v e l  (F ig .  8 ) .  Among 
o the r  th ings ,  we can use t h i s  i n fo rma t ion  t o  imple- 
ment s p e c i f i c  t i m i n g  r e l a t i o n s h i p s ,  bo th  r e l a t i v e  
and absolute,  w i t h o u t  c o n f l i c t .  

As we 

w: Complete Orderiny R e l a t i o n S h i p s  

"<" m a n s  "less important than") 
("9' means *'-re important than" 

When a system i s  de f i ned  i n c o r p o r a t i n g  the  as- 
pects o f  r e l i a b i l i t y ,  i l l u s t r a t e d  i n  F igures  1 t o  8, 
we can l i m i t  t he  complex i ty  o f  i n t e r f a c e  d e f i n i t i o n  
among systems. Furthermore, i n t e r f a c e  consistency 
and completeness can be checked s t a t i c a l l y  by com- 
pa r ing  the  use o f  c e r t a i n  system s t r u c t u r e s  w i t h  
t h e i r  d e f i n i t i o n s .  

stand the  system i n  ques t ion  and what i t  means f o r  
t h a t  system t o  be p red ic tab le ,  we a re  then ab le  t o  
concent ra te  on methods which w i l l  address bo th  the  
e r r o r s  on a se l f - con ta ined  bas is  o r  those ,which r e -  
s u l t  from a developmental evolvement process. It i s  
our  con ten t i on  t h a t  once a system i s  ab le  t o  be de- 
f i n e d  c o n s i s t e n t l y  and comple te ly  on a se l f - con ta ined  
bas is ,  then we a re  ab le  t o  evo lve  f rom such a dc!- 
f i n i t i o n  t o  a nex t  l a y e r  which i s  a l so  l o g i c a l l y  
cons i s ten t  and c o m ~ l e t e .  
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A S p e c i f i c a t i o n  Languaged Based on Com- 

V .  SUMMARY 

A system i s  de f i ned  i n  terms o f  i t s  o v e r a l l  en- 
v i ronment and w i t h  respec t  t o  i t s  p o s i t i o n  w i t h i n  
i t s  o v e r a l l  development process. An e r r o r  i s  an un- 
in tended phenomenon. 
e i t h e r  a se l f - con ta ined  bas is  ( i . e . ,  w i t h  respec t  t o  
i t s  o v e r a l l  environment)  o r  w i t h  respec t  t o  i t s  
p o s i t i o n  i n  the  development process. Once we under- 

A system can have an e r r o r  on 
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