RELIABILITY IN TERMS OF PREDICTABILITY

M. Hamilton and S. Zeldin

Higher QOrder Software, Inc.
Cambridge, Massachusetts

ABSTRACT

Issues of reliability include identification of er-
rors in relation to a particular object system. Ex-
perience in large system developments indicates that
objective error identification is not a simple pro-
cedure. Particular aspects of error identification
and analysis for a large, complex, real-time system
are addressed. In addition, some measures taken,

as a result of this experience, to address these
issues of reliability with respect to system defini-
tion are discussed.

I. INTRODUCTION

In order to talk about reliability, we need to
talk about systems and errors and systems which have
errors or systems which do not have errors. For a
reliable system is a predictable system; it does ex-
actly what it is intended to do. Just how reliable
a system is depends on the extent to which that sys-
tem is error-free. But, what is a system? What is
an error? And what does it mean for a system to
have an error?

The struggle for answers to these questions is
not just a mere exercise in a philosophical dis-
course, but rather the outcome of such an exercise
could have far-reaching practical implications in a
typical large system development process. This pa-
per discusses the implications we experienced with
a large system development as a result of having
gone through such an exercise.

Consider a system as an assemblage of objects
united by some form of regular interaction or in-
terdependence; a system itself could be an object
within another system. (For example, a software
system, a hardware system, and a man-in-the-loop
are not only systems, as individuals; but they
could also be objects with respect to an overall
system within which the individual systems all re-
side.) The very mechanism by which these objects
are united could determine just how reliable a par-
ticular system is.

A particular system may be considered from many
possible viewpoints (or development layers). If,
for example, one is concerned with a definition of
a system, it is viewed with respect to what it is
supposed to do. If one is concerned with a descrip-
tion of a system, it is viewed with respect to whe-
ther or not the definition is effectively conveyed.
If one is concerned with the implementation of a
system, it is viewed with respect to whether or not
the system is constructed to do what it is supposed
to do. If one is concerned with the execution of a
system, it is viewed with respect to whether or not

657

the system does what is is supposed to do. Whereas
the description and implementation layers of a sys-
tem represent static views, the definition and exe-
cution Tayers of a system represent dynamic views.

Just as software, as a system, could be consid-
ered as an object in a larger system, each viewpoint
of the software system, as a system, could be con-
sidered as an object with respect to the overall de-
velopment process of the software system as a sys-
tem. The important point to emphasize is that a
correct focus is necessary with respect to both a
component within a given system and a particular de-
velopmental viewpoint of that component before that
object as a system can be discussed in terms of its
reliability. If it is not possible to property
identify the object in question, we could be dis- -
cussing different objects when we think we are talk-
ing about the same ones, or discussing a particular
object with an incorrect assessment of the informa-
tion concerning that object. Thus, well-intentioned
changes for the sake of reliability could not only
do nothing, but, in fact, they could make things
worse. A case in point is the often misunderstood
set of objects called software systems.

Basically, software has to be defined before the
reliability of a particular software system is de-
termined. 1If, for example, software is considered
to include inputs from everything in the system with-
in which a computer program is to reside, the reli-
ability will no doubt be different than if the soft-
ware is considered to be only the computer program
itself (i.e., a set of instructions encoded in some
manner for a particular computer). Or, if software
is considered to include the specification of the
computer program, the reliability of the software
will be, no doubt, different than if the software
is considered to include only the implementation of
the specification (i.e., the computer program).

Once having determined the object in question, from
a software standpoint, it is then necessary to under-
stand conceptually the concepts of a software error
and the software having an error. Such was the case
on the Apollo project, where the issues of reliabil-
ity were of uppermost concernl.

The questions and corresponding answers which
follow summarize our attempt to understand how re-
liable the on-board "software" was after it had
flown on all of its "real simulations."

RELIABILITY ISSUES: QUESTIONS AND ANSHERS

Question: What is a software error?

Answer: A software error was an unintended pheno-
menon in either the specification for a computer
program or the computer program itself. There were

I1.

CH133R-3/TR/NNAN=NESTHON,To ©) 1978 TEEE



two major kinds of errors. One kind was determined
by analyzing a system (or a set of sub-systems) on

a stand-alone basis. For example, if the specifica-
tion had an inconsistency between its functions or
if the computer program had a data conflict, such
errors could be found by analyzing only the system
in question. Certain checks were made for complete-
ness, consistency, and non-redundancy with respect
to a self-contained system. At that time, there was
no method to guarantee this type of interface cor-
rectness. The other kind of error was determined

by checking one development layer with the layer
from which it evolved. Thus, for example, a compu-
ter program was compared to its specification; the
specification was compared to the designer's intent.
It was possibie to check for inconsistencies and
incompleteness between, say, a specification and a
computer program although we did net have methods
which guaranteed traceability between layers. And,
of course, we could not guarantee that a specifica-
tion was consistent or complete with respect to the
original intent of the designer. (Thirteen percent
of the errors during development fell into this cate-
gory, while 75 percent of the development erroEs were
due to logical incompleteness or inconsistency?.)
Today, we support the solution to the "13 percent
problem" by providing techniques which are intended
to eliminate other sources of problems.

How do you determine if an unintended phenomenon is
an error from a practical standpoint, and once hav-
ing done so, how do you weigh the seriousness of the
error in the context of overall reliability?

There were catastrophic errors which could have
aborted a flight, errors which were worrisome to

the success of a flight, and errors which were mere-
1y an annoyance. Other problems were officially re-
corded as "funny little things." They weren't pro-
blems per se, but yet, no one quite understood why
they happened, since they didn't make sense in the
context of known facts about the specification or
the computer program. Sometimes there were border-
line cases in that the difference in definition or
interpretation of the software could determine whe-
ther or not a potential problem was a real error.
The determination of these categories was often left
up to engineering judgement; others, however, were
more obvious and could be explicitly determined.

If the computer program "doesn't work" because the
specification is wrong, is the computer program un-
reliable?

The software was unreliable if the software speci-
fication was unreliable. With respect to the speci-
fication, however, the computer program was deter-
mined to be reiiable.

If an error is found in the computer program during
development and a decision is made not to fix the
error but to use a "workaround” (i.e., something
that either prevented its happening or eased or re-
moved its effect) to compensate for the error, is
there an error in the specification with the new
recorded anomaly and workaround, or does the record-
ing change the specification? Is there an error in
the computer program? If the computer program is
in execution and the error in question takes place
due to the error of ignoring the workaround, what
system does this error reside in?

Even though officially errors were recorded as

658

anomalies, unofficially the recording of an error
with a workaround, rather than fixing the error, was
an update to the specification. Such an update re-
moved, in essence, the anomaly in question. Thus,
if the error took place in flight with a workaround,
this was not an error to be recorded, since nct only
was it officially recognized before flight, but it
was also sanctioned to fly with special provision.
If, however, the error took place and the workaround
was ignored, the software system itself was not con-
sidered to have an error, but rather the user, who
ignored the workaround, was considered to be in er-
ror.

If an error is officially known before flight (that
is, it is recorded with the specification), but an
official decision is made not to fix it or not to
provide a workaround, and it occurs during flight,
is it a software error?

Such a phenomenon would not have been recorded as
an error, since a decision was made to officially
sanction its existence in the software. Thus, it
became part of the specification.

If an algorithm in a specification is incorrect, but
the algorithm in the corresponding computer program
is correct, 1is the computer program in error? Is
the specification in error? Or is only the design-
er, who created the specification in the first
place, in error? :
Technically speaking, the computer program would
have been in error. Practically speaking, if it
was feasible, the specification would have been up-
dated to conform with the computer program. The
specification was in error if the algorithm could
be determined to be incorrect, on a stand-alcne
basis, within the specification. Otherwise, the
error was the designer's, alone.

If an error is officially known before flight and

a decision is made not to fix it, but the computer
program is fixed anyway, is this an error in the
computer program?

To be consistent, the computer program was in error,
because it was inconsistent with the specification.
But an after-the-fact "fix" was sometimes considered
better than an already sanctioned anomaly. Other
times, fixes were frowned upon since last-minute
attempts to fix an error often either didn't fix
the program or made it worse. The resolution of
the dilemma of a "good" fix was left to management,
who either happily adjusted the specification by
cancelling the anomaly or became angry at the pro-
gram designer for his misguided good intentions,
and forced the designer to remove the illegal fix.

Sometimes specifications are provided in the form
of official documentation. Often, however, an im-
plementation is based upon well-known assumptions
that cannot be found in writing anywhere. Is it an
error if the implicit information is followed?
What if it is not followed?

Early in the project, implicit information made up
the major part of a specification; it was con-
sidered an error if it was not followed. Later, if
there was both implicit information and written in-
formation on the same subject, the written infor-
mation overrode the word-of-mouth information,
usually.



If there is an error in the input to the computer
program, is the data considered part of the computer
program when the reliability of that program is be-
ing measured?

If it was assumed that the final responsibility of
loading correct inputs to the computer program was
designated to either the mission-control engineers,
the astronauts, or the hardware, then the problems
resulting from wrong inputs (either instructions or
data) were not software errors. The exception to
this rule was if the computer program was required
to allow and filter bad inputs.

If certain areas of the computer program are secure
from the user and a lock mechanism prevents him

from changing the program to fix an error during
flight, is the philosophy of having a lock mechanism
in error?

Certainly, the error that was locked out from being
fixed was in ervror.

Conversely, if secure mechanisms are not implemented
and the user inadvertently causes an error because
he is not locked out, is the philosophy of having a
non-lock mechanism in error or is the user in error-
~or both?

An extreme case of bad inputs was when an operator
(1ike an astronaut) of the computer program inad-
vertently changed erasable* instructions incorrect-
ly. Certainly, in this case, the user was respon-
sible for making an error. It was not clear if the
non-lock mechanism approach was in error. As long
as there was an available mechanism to change eras-
ables and to send control to these erasables, cata-
strophies were possible. Yet, the computer program
could not be held responsible. One could draw the
conclusion that such dangerous practices should
never be allowed. Yet, if there had been a real
error in the software, this mechanism could have
saved a flight. (And, in fact, this very mechanism
did save a flight in the case of an error from a
system interfacing with the software.)

How can reliability be defined until the philosophy
of error detection and recovery is defined? What is
the relationship between reliability and error de-
tection and recovery? Should the specification de-
termine whether or not error detection and recovery
should exist at all or is this the responsibility of
the computer program? If the specification is re-
sponsible, should the specification include ap-
proaches for error detection and recovery?

In the early days of the project, many software en-
gineers lobbied to incorporate more error checking
procedures into the software. For example, it was
considered by some that all input data should be
checked and refused if it was not within predeter-
mined limits. The astronauts and other users con-
sidered such measures unnecessary, since they as-
sumed that the astronauts would know the procedures
so well that there was zero chance for error. Un-
fortunately, understanding the software was not
enough to prevent human errors. The more conserva-
tive philosophy was later vindicated when, on actu-
al flights, not only the astronauts but others made

*

Most of the instructions in the computer program
were hard-wired. But there was a small set of in-
structions that was not. This set was called er-
asable memory (as opposed to fixed memory).

659

real-time mistakes. The "no-error checking" phil-
osophy accounted for the majority of recorded system
errors. Of course, there were tradeoffs to consider;
the more error logic incorporated in the software,
the more chance for errors from the additional soft-
ware. Thus, a careful analysis was made to deter-
mine just where the critical error detection logic
should be incorporated. (Later we devised techni-
ques which addressed problems on a system-wide basis
and a lot of prima donna logic was no longer neces-
sary.) Input errors, which caused problems in the
software, were considered as software errors only

if the specification provided for the software to
protect itself against these errors.

If two errors cancel each other, is there an error?
No. However, if a subsystem was active with only
one of the errors, that error was counted.

If an error is not detected during flight, but it
is determined that it should have occurred, is it
to be recorded as part of the errors which occurred
on that particular flight?

Unresolved.

Is "better the enemy of good" in providing for pro-
tection against errors?

When adding redundancy or backup configurations,
there were more tradeoffs to consider. There was a
time when we were considering systems for the astro-
nauts that were so error-proof that we had finally
created the perfect system for preventing bad in-
puts. There was one flaw in the system however.

We had not only prevented the astronaut from making
any errors, we had prevented him from doing any-
thing. There werealso backup systems that could not
prevent errors any better than the primary system
{(i.e., generic errors). A wrong specification for
a primary and secondary system, for example, could
result in two incorrect computer programs. (Re-
sources are often compromised in the development of
a primary system for the development of a backup
system. This could jeopardize the reliability of
the primary system. Given a choice, it is better,
for example, to have a primary system that is 99
percent reliable over a primary system that is 50
percent reliable and a secondary system that is 50
percent reliable; for in the latter case, safety
could be compromised for safety's sake.)

If there is a "problem" in the computer program and
it is not clear if it originated in the specifica-
tion, to which system is the error attributed?
Here, the specific source of the error would be re-
corded as unknown (i.e., with respect to either the
specification or the computer program). However,
an error would have been recorded for the software.

when more than one specification exists and they
conflict with each other, which is in error?

Once, there was a question as to whether the com-
puter program interface specification or the simu-
lator program specification was correct. The flight
program aborted during a simulation by one of the
independent verification contractors. It was de-
termined by several experts that the simulator
should be fixed so that the flight program would
not abort. The simulator was fixed, the flight pro-
gram then worked beautifully during the next_simu-.
lation, but it aborted in a real unmanned flight.



This is a good example of a generic error being in-
troduced into a system which had preflight develop-
mental backup capability. As to which specification
was in error, when there is a conflict, there is no
easy answer until careful analysis is performed; and
even then, the existence of an error must be decided
upon in terms of the initial intent of the designer.

If several errors take place and they are later dis-
covered to be caused by a root source, are all of
these errors recorded in the determination of the
reliability of the system?

No. Errors, other than the root source errors, were
only recorded for descriptive purposes in the analy-
sis of the root error. There were times, however,
that it was not clear, until much later, that cer-
tain errors were connected. It is also no doubt
true that there were errors which were connected that
were never found.

If an error took place in the computer program dur-
ing flight, and a system error and detection mechan-
ism took care of the effect of that error, would
this have been a recorded error?

Yes. Sometimes the same mechanism that would have
taken care of a software problem would also resolve
problems from other systems. In one case where a
human error was found and recovered by the software,
the sgftware was blamed because it reported the bad
news!” Although there were no recorded software er-
rors during flight in the on-board flight software,
there were several overall system errors within
which the software resided. Many of these errors
affected the software, but, fortunately, the soft-
ware was able to recover or to be recovered in every
case.

III. OBSERVATIONS

0f these overall system errors, 73 percent were
real-time human errors, 92 percent were recoverable
by using software, 40 percent were known about a-
head of time but the workaround was inadvertently
not used, and 100 percent could have been prevented
by a more encompassing philosophy and tools to sup-
port it.

The analysis of the Apollo system problems during
actual flights pointed out that the philosophy of
how one goes about defining system relationships
cannot be overemphasized. The type of relationships
can determine not only how reliable the interfaces
are, but also how flexible a system is in order to
make new decisions with fast response times, both
during development and in real time. The need for
this type of flexibility was often crucial during
off-nominal mission conditions.

IV. QUALITY OF SPECIFICATION

The difficulty in measuring the reliability of
software is, in part, because of an inability to
adequately define what it is a system is intended to
do. To measure something is to determine the quan-
tity of that something by comparing it to some stan-
dard or unit. The problem of measuring a soEtware
system is well stated by Manna and Waldinger':

To determine whether a program is correct,
we must have some way of specifying what
it is intended to do; we cannot speak of

660

the correctness of a program in isolation,
but only of its correctness with respect
to some specification.

With respect to their own work, Avizienis and Chen5
stress the importance of a reliable software speci-
fication as a standard unit of measure for develop-
ing equivalent algorithms.

If to measure the reliability of a software sys-
tem we need an adequate specification, we are faced
with the problem of measuring the reliability of the
specification itself. In this case, it is impcssi-
ble to completely measure the intent of a desicner;
we can at least measure logical completeness ard
consistenty, i.e., quality assurance.

Reljability, in the sense of quality assurance,
is addressed in the specification language, AXES®,
by providing mechanisms to define data types (in
order to identify objects); functions (in order to
relate objects of types); and structures {in o-der
to relate functions). The aim is to be able to de-
fine a system so that we can automatically check in-
terface specifications statically. The foundations
of AXES are based on a set of contro] axioms dz2rived
from empirical data of large systems®. (Fig. 1 il-
Tustrates this evolvement by the connecting dashed
lines.) Each axiom describes a relation of immedi-
ate domination with respect to a functional system.
We call the union of these relations control. From
these axioms, a set of yhree primitive control struc-
tures have been derived’. These three control
structures identify control schemas on sets of ob-
jects. From the assumption that we can identify an
object or a set of objects, a mechanism for defining
an algebra for each distinct set of objects is pro-
vided in AXES. Each algebra takes the form of a
set of axioms that relate operations applied fo ob-

jects of a type.

7
/

/ Formulate

v
bt
ddentiticaton control
e pririliy N felatiens on
- s
_ ™ mappin,
. Pping:
axioms on a
type

Fig. 1: Quality Assurance Chrcks with
Respect ta AXES

To form a system, defined as a function, rontrol
structures are defined in terms of the primitive
structures; operations are defined either implicitly
by deriving them mathematically from the axioms on
a type or explicitly in terms of control structures



using already defined operations on a type. When
an operation is defined both implicitly and explici-
tly, we can crosscheck the intent of the specifica-
tion for correctness (Fig. 1).

AXES uses the functional notation

y = f(x) %))

where x is the input, y is the output, and f is the
operation applied to x to produce y.

In attempting to define a system as a function,
we already have incorporated an element of reli-
ability in that we assert that for every value of
“x" we expect to produce one and only one value for
"y". That is, we expect the system to predictably
produce the same result each time we apply f to a
particular value.

Now, we must incorporate into our definition a
means to identify all of the acceptable inputs and
outputs and a means to describe the relationship be-
tween the inputs and outputs. In AXES, each input
and output value is associated with a particular
set of values. Each particular set of values, call-
ed a data type, is defined by means of an algebra.
The syntax for defining each algebra is similar to
that used by Guttags, but the semantics associated
with each algebrg is similar to the concepts de-
scribed by Hoare”?. The semantics for our algebras
assumes the existence of objects. That is, when we
define a system, as in (1), we assume the values of
x and y to exist, and that when f is applied to x,
y corresponds to the value x.

In many systems, especially large ones, it is of-
ten not readily apparent which input values corres-
pond to the system's intended function until the
system is decomposed into smaller pieces. Although
we start with a Jarge set of "seemingly" acceptable
values, a predictive system must be able to identify
"truly" acceptable inputs or to produce an indica-
tion that a particular function will not be able to
perform its intended function. To identify a sys-
tem's intended function, we make use of a distin-
guished value which we call Reject. This distin-
guished value is a member of each data type (Fig.2).
If an input value corresponds to the value Reject,
as an output, then the function applied to that in-
put is said to have detected an error. A function
applied to an input value of which Reject is a com-
ponent (e.g., the value (1, 3, Reject)) mayeither

“assign Reject as an output value, or-may "recover"
from the error by assigning an output value other
than Reject. .

Fig. 2: Acceptable vs intended Values of a Function

Once we have identified all acceptable inputs and
outputs of our system, we need a means to describe
the relationship between the input and output,
sometimes called the performance of the function.

We can relate input to output by asserting relation-
ships about our system in terms of already defined
operations and already defined relationships on a

661

set of_operations. Relations on a set of operations
give rise to a hierarchical system structure. This
means that when our definition is complete, the
structure of our system will look something like the
structure appearing in Fig. 3.

At each node in our hierarchy we shall put a
function with the intent that at any level of our
h1erarchy (a level is a set of immediate dominated
nodes with respect to a particular node, sometimes
called a step of refinement), we can relate the
functions at that level to the function at the node
immediately dominating them.

Hierarchical System Structure

Fig. 3:

We need a set of rules to determine a level, and
a set of rules to determine whether we want to cre-
ate a level (or stop decomposing).

To determine a level, we want all the functions
at the nodes of a level to be necessary and suffici-
ent to replace the function at the node directly
controlling these functions (Fig. 4). This will
assure us that we will get no more or no less than
we want, i.e., that our level is logically complete.

replace

Fig. 4: Level Completeness

As we continue to build our hierarchy, each level
completely replacing the function at the node di-
rectly above it, we must be able to define each
point at which we want to stop. We stop when we
reach a function whose behavior, j.e., its input
and output relation, has been defined in terms of
other operations on a defined type, and our specifi-
cation is complete when we determine each stopping
point. Now, if we know the behavior of each func-
tion at a bottom level and how it relates to the
other functions at that same level, we know the be-
havior of the node directly above it. And with the
same reasoning, we then know the behavior of the
functions at each level successively closer to the
root, or top node. And with the same reasoning, we
end up with knowing the behavior of the root func-
tion itself. Thus, the behavior of the top node is
ultimately determined by the behavior of the col-
lective set of bottom nodes (Fig. 5).

Now we also want to assure logical consistency
for a level. Since our intent, in the end, is to
understand the behavior of the function at the top
node, every time we talk about a value of that func-
tion we want to assure outselves that we are talking
about the same value at the level directly dominated
by that function; that is, we want to be able to



Fig. 5: tndpoint Completeness

determine which values match up with which func-
tions. To talk about a value we use its name, or
variable. We want to be consistent about input
variables (Fig. 6) and output variables (Fig. 7).

y = flx}
g = h(x) y = plg)
Fig. 6: Tracing Input Names Fig. 7: Tracing Output Names

To avoid specification errors in naming values, a
particular name is always associated with the same
value as we travel down the hierarchy.

If our function is intended to be executed on a
computer, we want to be able to determine which
functions are more important than others. As we
travel down the hierarchy, a function is always more
important than the functions at the level dominated
by that function, and at a particular level each
function is assigned an importance with respect to
each other function at that level (Fig. 8). Among
other things, we can use this information to imple-
ment specific timing relationships, both relative
and absolute, without conflict.

Fig. 8: Complete Orderiny Relationships

(*>" means "more important than"
''<" means ”less important than*}

When a system is defined incorporating the as-
pects of reliability, illustrated in Figures 1 to 8,
we can limit the complexity of interface definition
among systems. Furthermore, interface consistency
and completeness can be checked statically by com-
paring the use of certain system structures with
their definitions.

V. SUMMARY

A system is defined in terms of its overall en-
vironment and with respect to its position within
its overall development process. An error is an un-
intended phenomenon. A system can have an error on
either a self-contained basis (i.e., with respect to
its overall environment) or with respect to its
position in the development process. Once we under-

662

stand the system in question and what it means for
that system to be predictable, we are then able to
concentrate on methods which will address both the
errors on a self-contained basis or those which re-
sult from a developmental evoivement process. It is
our contention that once a system is able to be de-
fined consistently and completely on a self-contained
basis, then we are able to evolve from such a de-
finition to a next layer which is also logically
consistent and complete.

REFERENCES

1. Hamilton, M. "First draft of a report on the
analysis of APOLLO system problems during flight,"
Shuttle Management Note 14. Charles Stark Draper
Laboratory, Inc., Cambridge, MA, Oct. 1972,

2. Hamilton, M. and S. Zeldin. “Higher Order Soft-
ware--A Methodology for Defining Software." IEEE
Trans. on Software Engineering, Vol. SE-2, No. T,
Sept. 1975.

3. Hamilton, M,
March 1, 1971,

Letter to the Editor. Datamation,

4, Manna, Z, and R. Waldinger. “The Logic of Com-
puter Programming," IEEE Trans. on Software En-
gineering, Vol. SE-4, No. 3, May 1978,

5, Avizienis, A, and L. Chen. “On the Implementa-
tion of N-Version Programming for Software Fault-
Tolerance during Program Execution." Proceedirgs,
Computer Software and Applications Conference
(COMPSAC), Chicago, Nov. 8-11, 1977.

6. Hamilton, M. and S. Zeldin. "AXES Syntax
Description," TR-4. Higher Order Software, Inc.,
Cambridge, MA, Dec. 1976.

7. Hamilton, M. and S, Zeldin. "“The Foundations
for AXES: A Specification Languaged Based on (om-
pleteness of Control," Doc, R-964. Charles Stark
Draper Laboratory, Inc., Cambridge, MA, March 1976.

8, Guttag, J. "“The Specification and Application
to Programming of Abstract Data Types.' University
of Toronto Technical Report CSRG-59, Sept. 1975. i

9. Hoare, C.A.R.
ter Programming."

“An Axiomatic Approach to Compu-
CACM 12, Oct, 1969.



