
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-2, NO. 1, MARCH 1976

ing Techniques, J. N. Buxton and B. Randell, Ed. Brussels,
Belgium: NATO Scientific Affairs Division, 1970, pp. 84-87.

[41 N. Wirth, "Program development by stepwise refinement," Com-
mun. ACM, vol. 14, pp. 221-227, Apr. 1971.

[51 W. A. Wulf, "The GOTO controversy: A case against the GOTO,"
SIGPLANNotices, vol. 7, pp. 63-69, Nov. 1972.

[6] C. A. R. Hoare, "Monitors: An operating system structuring con-
cept," Commun. ACM, vol. 17, pp. 549-557, Oct. 1974.

[7] E. W. Dijkstra, "On the axiomatic definition of semantics," EWD
367, privately circulated.

[8] D. L. Parnas, "On the criteria used in decomposing systems into
modules," Commun. ACM, vol. 15, pp. 1053-1058, Dec. 1972.

[9] -, "A technique for software module specification with
examples," Commun. ACM (Programming Techniques Dept.),
pp. 330-336, May 1972.

[10] P. 'Naur, "Programming by action clusters," BIT, vol. 9, pp. 250-
258, 1969.

[11] P. Henderson and R. Snowdon, "An experiment in structured
programming," BIT, vol. 12, pp. 38-53, 1972.

[12] D. L. Parnas, "A course on software engineering techniques," in
Proc. ACM SIGCSE, 2nd Tech. Symp., Mar. 24-25, 1972.

[13] E. W. Dijkstra, "Co-operating sequential processes," Programming
Languages, F. Genuys, Ed. New York: Academic Press, 1968,
pp. 43-112.

[14] W. R. Price, "Implications of a virtual memory mechanism for
implementing protection in a family of operating systems," Ph.D.
dissertation, Carnegie-Mellon Univ., Pittsburgh, PA, 1973.

[151 B. Randell and F. W. Zurcher, "Iterative multi-level modelling-
A methodology for computer system design," in Proc. IFIP
Congr., 1968.

[16] D. L. Parnas, "On a 'buzzword' hierarchical structure," in Proc.
IFIP Congr., 1974, pp. 336-339.

David L. Parnas received the B.S. and M.S. de-
grees in electrical engineering, and the Ph.D.
degree in systems and communications sciences,
from the Carnegie Institute of Technology,
Pittsburgh, PA, in 1961, 1964, and 1965,
respectively.
He has held the position of Assistant Profes-

u ,1li sor of Computer Science, University of Mary-
land, College Park, and was Assistant and
Associate Professor of Computer Science at
Carnegie-Mellon University, Pittsburgh, PA.

Since June of 1973 he has been Professor and Head of one of the two
Research Groups on Operating Systems at the Technische Hochschule
Darmstadt, Darmstadt, West Germany. He is also a consultant for the
U.S. Naval Research Laboratory, Washington, D.C. His areas of research
have been design methods for computer systems, process synchroniza-
tion in operating systems, security mechanisms in operating systems,
simulation techniques, and design automation.

Higher Order Software-A Methodology for
Defining Software

MARGARET HAMILTON AND SAYDEAN ZELDIN

Abstract-The key to software reliability is to design, develop, and
manage software with a formalized methodology which can be used by
computer scientists and applications engineers to describe and com-

municate interfaces between systems. These interfaces include: soft-
ware to software; software to other systems; software to management;
as well as discipline to discipline within the complete software develop-
ment process. The formal methodology of Higher Order Software
(HOS), specifically aimed toward large-scale multiprogrammed/multi-
processor systems, is dedicated to systems reliability. With six axioms
as the basis, a given system and all of its interfaces is defined as if it

Manuscript received May 1, 1975; revised October 15, 1975. This
paper was prepared under Contract NASA9-13809 with the Lyndon B.
Johnson Space Center of the National Aeronautics and Space Adminis-
tration, and under The Charles Stark Draper Laboratory, Inc., Internal
Research and Development Funds. The publication of this paper does
not constitute approval by the National Aeronautics and Space Admin-
istration of the findings or conclusions contained herein. It is published
only for the exchange and stimulation of ideas. The Charles Stark
Draper Laboratory, Inc., 68 Albany St., Cambridge, MA 02142 al-
ready holds the copyright to the contents contained in this manuscript.
The authors are with the Computer Science Division, The Charles

Stark Draper Laboratory, Inc., Cambridge, MA 02142.

were one complete and consistent computable system. Some of the de-
rived theorems provide for: reconfiguration of real-time multipro-
grammed processes, communication between functions, and prevention
of data and timing conflicts.
The rist step in defining a system with a formal methodology is to

apply a formalized set of rules. We have found that enforcing such
rules, especialy on a large project with many organizations, is very
difficult. In fact, it is almost impossible without the aid of automated
tools to describe the design process and its verification. We envision a
scheme in which the definition of a given system can be described
with an HOS specification language which, by its very nature, enforces
the axioms with the use of each construct. A system dermed in HOS
can be analyzed automatically for axiomatic consistency by the Design
Analyzer without program execution, and by the Structuring Executive
Analyzer on a real-time basis. The result is that a software system can
be developed efficiently with reliable interfaces. This is significant
since interface testing in a large system accounts for approximately
75 percent of the verification effort.'

1Seventy-three percent of all problems found during the APOLLO
integration effort were interface problems [2]; and verification accounts
for 50 percent of the total software development effort [3] -[5] .

9

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1976

Index Terms-Axioms, formal methodology, functional decomposi-
tion, interface correctness, specification, static verification, structuring
executive.

I. INTRODUCTION
HT IGHER Order Software (HOS) is a formal methodology

for reliable systems specification and development [1].
In order to devise a methodology which is totally system

oriented and not traditionally software- oriented, it became
apparent that the definition of a software system must be hard-
ware independent, language implementation independent, and
computer resident software independent. Thus, HOS is con-
cerned only with computable functions and their relationships,
e.g., hierarchical decomposition into subfunctions.
For this discussion we will consider the class of effectively

computable functions to coincide exactly with the definition
of the term, software. A function is said to be effectively
computable if there is a mechanical and finite method of cal-
culating the value of the function in all cases when its argu-
ments are given [6] . A system function that is not computable
can interface with a software system if we define a set of
functional interfaces for that noncomputable system. Then it
is possible to interface software with other systems, to model
any system in the form of software, to show a noncomputable
system within a total problem specification, or to integrate
any combination of the above.

If a given system can be defined in such a way as to be "soft-
ware," then it follows that a reliable methodology for defining
general systems can be applied to software and vice versa.
Secondly, if a given system is defined using software tech-
niques, that system can be functionally tested on a computer.
If we look at systems, in general, as software, it may help to
more thoroughly understand a complicated system, or help
make a seemingly complicated system less complicated.

It is possible within the framework of HOS to develop a new
class of automatic tools. For example, the interfaces of an
HOS system can be exhaustively tested by an automatic
analyzer without program execution. We consider this tool to
be important, since interface testing in a large system is known
to be a very costly procedure.2
The HOS methodology can be used for the definition of soft-

ware for multiprogrammed, multiprocessor, or multicomputer
systems. For any of these systems, the approach would be to
first use HOS to design one implementation independent sys-
tem structure3 and then, for implementation, to distribute the
functions of that system among software and hardware re-
sources while maintainin'g the original system structure.

II. METHODOLOGY

HOS is software expressed in its own metalanguage and con-
forming to a formalized set of laws. The basic components of
HOS methodology are (Fig. 1): 1) the application of the for-
mal set of laws to the design of a given problem; 2) a specifica-
tion language adhering to these laws; 3) the automatic analysis
of system interfaces by the Design Analyzer and the Structur-

2See footnote 1.
3A system framework which specifies the relationships for functions

and their interfaces.

ing Executive Analyzer; 4) the architectural virtual layers
produced from analyzer output in the form of software, firm-
ware, or hardware4; and 5) the hardware that is transparent
to the user.4 In addition, support tools based on system
consistency with the axioms could enhance a given develop-
ment process in such areas as: performance analysis, simula-
tion, design automation, definition of subsystem requirements,
automatic documentation, and automatic management
techniques.

A. Formulation
In HOS, any given software system can be represented by a

single mathematical function where the input set defines the
domain of the function and the output set defines the range of
the function. The function representing the entire system is
an assumption from which subfunctions, representing subsys-
tems, are derived. Those functions that perform5 the "system-
function" describe subsystems, each (subsystem) of which
may be represented by a single mathematical function of its
own. Since we assume a hierarchical structure for a software
system, we must define the elements and relations of that
hierarchy [7]. We consider a software system to be a hierarchy
in which the elements of a hierarchical system are the mathe-
matical functions and the defining relation of that hierarchy
is that of control (explained below).
The design for a particular software system is based on six

axioms that describe control and are described by a meta-
language. These axioms explicitly define hierarchical soft-
ware control, where control is a formally specified affect of
one software object to another software object. Each affect
is implemented by a mechanism (such as a language) which is
effected at the next and only the next most immediate lower
virtual layer.
A virtual layer is a system in which the input and output

variables are completely defined by the axiomatic specification
of any given system structure. For example, the decomposi-
tion of a software problem is formally defined level by level
with respect to problem definition (i.e., the net effect of
performing each subfunction at a given level is a functional
redefinition of the most immediate higher node of the hier-
archical tree), and layer by layer with respect to implementa-
tion (i.e., the net effect of translating a given control
mechanism).
The formal definition of the control system, first described

in [1], is reprinted in Appendix I (with minor modifications)
as a guide to the following discussion. In addition, the defini-
tions of the following aspects of control are provided below
as an aid to the reader.

An access right provides for the ability to locate an element
of a given set of variables, and once located, the ability to
reference or replace a value of said element.
Invocation provides for the ability to perform a function.

4Our work, to date, has concentrated on the first three areas of HOS
methodology.
5Perform: provide one and only one element of the output set for a

particular element of the input set.

10

HAMILTON AND ZELDIN: DEFINING SOFTWARE

DESIGN|
r ANALYZER

FROCLEM | SISTENT + SCFICAlO | ARCHITECTURAL | E3
[j J[j~WI XIOMS LANUAG LAYERS

STRUCTURING
r- -- EXECUTIVE

SUPPORT ANALYZER

SYSTEMS_

Fig. 1. Higher Order Software methodology.

Ordering provides for the ability to establish a relation in a
set of functions so that any two function elements are com-
parable in that one of said elements precedes the other said
element.
Responsibility provides for the ability of a module to pro-
duce correct output values.
Rejection provides for the ability to recognize an improper
input element in that if a given input element is not accept-
able, null output is produced.

On the basis of the axioms (see Appendix I), many theorems
have been derived. Theorems exist which minimize logical
interfaces. For example, if a function from a given control
level is removed and its controller module still maintains the
same relationship between input and output, the function is
extraneous. Violation of this theorem, in common practice,
manifests itself in modules with many user options. With
respect to the entire system, the use of extraneous functions
proliferates test cases and complicates interfaces. Theorems
exist for proper structuring of real-time multiprogrammed
processes in which one or more of a controller's subfunctions
is realized as an asynchronous process. In this way a function
can be implemented as a process tree (a process and its depen-
dents). For example, each module controls the priority rela-
tionships of its dependent processes. Not only are these
priority relationships relative rather than absolute, but each
controller at a given level has a higher relative priority than
each process tree that implements its subfunctions. The order
of process activation can be derived from the order of function
invocation as defined by the axioms. In a multiprogramming
environment there is a further constraint in that the order of
process activation is preserved under interrupts occurring at
any level in the hierarchy. This implies that if process A is of
higher priority than process B, process A always interrupts all
of B; i.e., the priorities of the dependent processes ofA are all
higher than the priorities of all dependent processes of B.
The axioms guarantee that data conflicts among functions

are eliminated. In addition to the functional relationships
between input and output variables, one can also attach a
predicted time to the execution of a given function. Using
the axioms, a particular system of functional relationships,
and a particular interrupt structure, one can determine the
maximum completion or delay time for a given set of
subfunctions.

B. Interface Correctness
Interface correctness is a property of a system which results

in the ability to perform a function without ambiguity. We
believe that the interface correctness of any given software
system can be proven if the system interfaces are shown to be

consistent with the axioms of HOS. One aspect of an interface
is that it relates the specification at one node to the specifica-
tion at another node.
The specification of a node is the relationship of the element

of the input set to the one and only element of the output set
that corresponds to said input element. For example, if we
can enumerate such a mapping, we could make a table for the
specification such as:

x y

1 2
3 6

The question: "do we want y to be 6 ifx is 3?" is not relevant
here, since the table is the original assumption, i.e., giveny = 3
when x = 6.

If one and only one subfunction is required to assign a par-
ticular element of the output set of a controller, the interface
between the elements (or table value) at the controller level to
the elements at each subfunction level can be determined.
That is, each element is accounted for in a unique way by the
defimition of the subfunction of the controller. The correct
interface is validated by accounting for each element; it does
not validate the specification, i.e., the table itself. The ques-
tion: "does the table do the job?" is what we will call
performance testing. Whenever a new "table" is defined, the
question of valid assumption must be determined.6 A new
table is defined whenever the variables of the output set of
one function are the variables of the input set of another func-
tion-; both of which exist at the same level and are controlled
by the same controller. Subsequent decomposition of each
function must be consistent with the table at the higher
level. Thus, with HOS, we can determine the domain and
expected values when a performance test is required. In some
cases, a performance test can be a formal proof of correctness.
In other cases, the performance of a function can only be
validated by demonstration (i.e., executing the function with
sample values). When the specification itself is an approxima-
tion, we can validate the table by simulation.
Since an element is obtained from a value from each of the

variables that determined an input or output set, the variables
themselves bound the elements and are, therefore, considered

6Thirteen percent of all problems found during the APOLLO integra-
tion effort were due to performance specification errors [2].

I1I

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1976

to be an interface. The relationship between the variables at
one node and the variables at another node are completely
defined by HOS. The definition of that relationship makes it
possible to provide a means to eliminate data conflicts.
Another aspect of an interface is timing, the property which

considers the relative ordering of execution of subfunctions at
a given level and the elapsed time taken to execute these func-
tions. We do not explore the timing aspects in depth in this
paper.
The designer is aided by the rule of node uniqueness and the

theorems concerning self-control in determining the common
boundary of function to function and variable to function.
Similarly, the designer is aided by the ordering axiom in deter-
mining the absolute timing boundary by using the relative
ordering per level, frequency of operation of a function, and
the absolute time of execution of a function. The boundary
here is the maximum delay time or completion time for a
process. An operator (or function "name" without its vari-
ables) is not constrained by HOS; while operator to function
boundaries are determined by the variables used to define
the elements of the input set and the output set.

C. Specification Language Principles
The intent of an HOS specification language is to ensure that

the properties of system performance can be completely sepa-
rated from the properties of interface correctness. Such a
language is not primarily concerned with computer execution,
but rather with reliable system decomposition. We assume a
computable system and, then, represent that system within the
language. A system specification described by the language
can be interpreted for computer execution. Whereas instruc-
tions written in lower level languages are statically checked by
an assembler, and statements written in higher order languages
(HOL's) are statically checked by a compiler; interface speci-
fications written in an HOS language are statically checked by
an analyzer.
The process of converting an HOS language from a specifica-

tion level to the procedural7 level can be performed by an
automatic programmer. The automatic programmer is a defini-
tional interpreter [8] that can apply the subfunctions of a
node in the order that they are needed. This order is deter-
ministic due to the constraints imposed by the axioms. The
automatic programmer could be a part of the analyzer process
for a given computer. If an intermediate language is desired
for the implementation process, a translation from the auto-
matic programmer to an existing compiler language can be
developed.
Without an HOS language, the application of the HOS axioms

is manual and requires considerable knowledge and experience
for the system design process. The intent is to remove the
manual process, and to incorporate into the axiom-dependent
language constructs a means for expressing a given system.
The constructs are chosen so that it is possible to check
syntactically whether the application of a construct is consis-
tent with the axioms. If each controller is represented by the

7Sequencing requirements.

application of a construct, it will be possible to ensure reliable
interfaces of a given system by merely checking (either
statically or at execution time) for proper application of that
construct. This checking is done by a Design Analyzer statically
and by a Structuring Executive Analyzer dynamically.
We can define a basic unit within and HOS structure, the

nodal family, as one which describes a particular node and its
immediate, and only its immediate, lower level nodes. Within
the context of a language, we describe the nodal family by
means of a nodal set. The nodal set is a set of operations which
collectively define all the relationships between the members
of a particular nodal family. The nodal family, characterized
by the method of decomposition of the "offspring" nodes
with respect to the parent node, is defined within categories
of the nodal set referred to as construct classes. A construct
class represents a function decomposition, the subfunctions of
which can only be regrouped recursively. Fig. 2 illustrates
two possible regroupings of the same function. Note that the
regrouped subfunctions do not change in any way.
A function is decomposed by partition or composition. The

subfunctions of a decomposed function can be decomposed
in the same way until the most primitive level of decomposi-
tion is reached.
Within the partition class, constructs indicate decomposition

of the parent function by division of the variables of the par-
ental output set or elements of the parental input set. Char-
acteristics of a partition that select8 elements of the parental
input set [Fig. 3(a) and 3(b)] are 1) each subfunction pro-
duces a value for every variable of the output set; 2) each
input set of each subfunction is a proper subset of the parental
input set (cf. Section III). Fig. 3 shows the control map repre-
sentation of such a partition. Here, a variable representing a
subset of the domain of x is described by referring the subset
(indicated by the subscript) to the total set (the input set
defined by the values of the variable x). For example, a vari-
able x{xlx>o} represents an input set by the values of x
greater than zero.
Language constructs can be provided to reference subsets

of the elements of the parental input set. Some constructs of
this type, such as if A then B else C, exist today in HOL's.
In fact, the latter construct is also a basic construct of struc-
tured programming. Unfortunately, the enforced language
construct found in existing languages provides only the
branching mechanism, but does not require expression A to
provide a partition; nor does it require subfunctions B and C
to assign a value to the same output variables. It is interesting
to note that a language construct such as ifA then B is invalid
for HOS, since the partition is incomplete and, therefore, the
decomposition of the parental node is incorrect. An HOS
selection, however, in the form of if then else would not only
require a partition, but that partition is restricted in that
neither subfunction set of input elements is to be equal, else
the controller module would have no criteria for choosing a
subfunction.
Automatic programming of a partition which selects elements

8A selection divides the elements, a , where a E A, into a partition, B,
ofA such that b E B and A = uiisj bi and for two sets birnbi = p.

12

HAMILTON AND ZELDIN: DEFINING SOFTWARE

<<
1

Fig. 2. Recursive regrouping of construct class, C.

y=f(x) y=f(x)

Y 2(xaxlx=)}) Y f3(X{xIx<01) Y=fl(h) h=2(c) 9)3(x)

(a) (c)

Y= 3(xfxlx<0}) Y=fo(g) g=f3(x)

Y=fi(x{xix>o}) Y=f2(x I{x=O}0
Partition Class: selecting elements
of the parental input set.

(b)

y=fI(h) h=f2 (g)

Composition: transforming elements
of the parental input set.

(d)

Fig. 3. Primitive control structures.

of the input set can optimize use of computer resources by
using the fact that for each particular performance, only one
subfunction will be executed. Since subfunctions of this
type do not communicate with each other, these subfunctions
could easily be dedicated, each to a separate computer. For a
multiprocessor configuration, we might make use of the fact
that once a subfunction is selected on a given level, other sub-
functions on that level are no longer required.
A partition decomposition of another type is one in which

the variables of the output set are divided (at least one for
each subfunction). Here, all variables of the input set are
distributed among the subfunctions. In this case, all subfunc-
tions are performed for every element of the input set of the
controller, and yet no two subfunctions assign the same out-
put variable. Also, there is no communication between sub-
functions, so that subfunctions of such a decomposition can
be automatically sequenced for parallel processing. If per-
formed in one computer, the flow of execution could proceed
from one subfunction to the next, returning control to the
controller when every subfunction has been performed. Some
language constructs proposed for parallel processing, such as
PARBEGIN,9 could be used by the automatic programmer for
procedural purposes if the simultaneous execution of subfunc-

9cf. Algol-68.

tions were analyzed as optimal for a particular nodal set of
this type.
The decomposition class used to express communication on

one level between one subfunction and one other is the
composition class [Fig. 3(c) and 3(d)]. Here, variables of the
input set of a function are all input to one subfunction. That
subfunction transforms those variables to an intermediate set
of variables. In turn, that intermediate set of output variables
is referenced by one particular subfunction. This type of de-
composition is best performed within one computer, since
each subfunction communicates with another subfunction on
the same level.
Composition of functions is enforced among HOS subfunc-

tions by the requirement that variables of the input set of a
function are not equal to variables of the output set of that
same function. Also, since the controller explicitly specifies
the subfunction relationships, the order of execution of the
subfunctions can be determined independently from a par-
ticular sequence of language statements specifying these sub-
functions. Many existing block structured languages have
incorporated sequential branching mechanisms, such as
the call, to encourage use of composition techniques. Some
languages prohibit the use of uncontrolled branching, i.e., no
goto's to encourage composition techniques [9]. But, existing
block structured languages encourage modules at a given level
to invoke other modules at that same level, i.e., the architectural

13

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1976

hierarchy of a program is not equivalent to the "control"
hierarchy of a program.

It is important to note that certain traditional "software"
functions are not computable from an interface correctness
point of view. Such a noncomputable function (Fig. 4) shows
an undetectable dynamic loop. In order to determine= if a
function is interface computable, an exercise is made to deter-
mine if an iterative mechanism can be transformed to a recur-
sive formulation either manually or automatically. Fig. 4
represents a circular computation in that operator A, which
directly invokes operator A, although seemingly recursive, is
not, in that the function y =A(x) is not computable. From
these considerations the iterative construct, while A do B (as
it exists in many programming languages) is invalid for HOS
specification. The while is invalid for HOS specification be-
cause it can alter elements of its own input set and it can
assign intermediate values to variables of its own output set.
The property that a variable is accessed as an input variable
and as an output variable of the same function is in direct
violation of Theorem 3,4.1 [1]. Although loops are prohibited
for HOS specification they will probably be used for imple-
mentation. The widely used form of while A do B could be
constrained for system implementation by controlling such a
construct with a for control mechanism and by use of a local
variable protection mechanism for intermediate values. For an
HOS specification we are restricted so that local initialization
and consequent iteration is identified via a recursive formula-
tion. Fig. 5 shows a recursive operator as a combination of
primitive composition and partition control structures.
We consider here the use of the composition and partition

control structures as applied to error detection and recovery
specification in a real-time environment. A partition decom-
position can be used for error detection and error recovery
(Fig. 6). An error occurs when an output element is undefined,
i.e., y Iy E ,p [Fig. 6(a)] . An error is detected when an input
value is undefined, i.e., x I x E (p. Error recovery implies that a
subfunction is provided as an alternate function formulation
for all values of the parental input set not acceptable to a
primary formulation. For HOS, recovery from a detected
error within a function is always provided for by its controller
[Fig. 6(b)]. The nodal set for each nodal family can provide
for: 1) alternate formulation of subfunctions in the event that
a subfunction detects invalid input values, or 2) rejection of
its own input set in the event that no alternate subfunction
formulation exists. The nodal set for each nodal family always
provides the ability to include a restart '1 mechanism for any
subfunction because of the inherent structure of the system
itself. This is true because a subfunction can never alter its
inputs; every subfunction always has knowledge of its complete
set of inputs; and inputs can be directly traced to one and only
one other function. Thus, we may simplify hardware/software
interface requirements in the case of a hardware failure: for in
this case we could automatically, via the hardware, define a
single node restart mechanism (i.e., HOS "single instruction"

lORestart: when a process can be interrupted during its execution
and can be arbitrarily reinitiated without any loss in the validity of its
computation.

y=A(x)

y=f(z) z=A(x)

y=A(x)

y=f(z) z=A(w) w=f(x)

Fig. 4. Dynamic loop from an interface correctness viewpoint.

y=B(y1)

Fig. 5. Recursive operator (where a C A).

restart). With few exceptions [10], [11], most existing
HOL's seem quite unstructured in their approach to such con-
structs, e.g., error scope is different than name scope, dynamic
error scope allocation often exists with uncontrolled branch-on-
error.
The integration (via composition) of error detection and re-

covery with error occurrence is demonstrated in Fig. 7. In Fig.
7(a) the structure of the system is completely specified in that
each control relation and element appears on the formal control
map.'1 The node represented by function f2 provides error
detection for variable y'. If y' is in error, i.e., yl y' E p, then
alternate A is invoked to provide a valid element for y. If
y' is not in error, function [6 assigns the valid y' element to
y; where y is the true output variable for the controller node,
represented by the function fo.
Nodes f3 and f4 show the need for error handling procedures

in that, here, only an indirect test on x (via testing w directly)
is possible.
In such a manner, an abstract control structure (nonprimitive

control structures) could be generated, e.g.,P unless error then
A [Fig. 7(b)]. We could look at the "implementation" of the
abstract control structure to be the result of a transformation
from the control structure to the structuring machine via a
mechanism such as a compiler. For example, nodes fI, and [2
might be considered to be part of a compiler specification in
that the compiler interface (e.g., necessary copies of "applica-
tion" variables for restart purposes) could be extracted from
the definition off, and f2 . In Fig. 7(b), all control information
is not seen on the representative control map; instead, the ab-
stract control structure [whose formal specification is seen in
Fig. 7(a)] and the representative control map are required to

l The formal control map may be looked at as a "structuring machine
in which no additional information is required to establish complete
control of any system node other than that represented on the control
map. The primitive control structures of composition and partition are
used to generate a formal control map.

14

HAMILTON AND ZELDIN: DEFINING SOFTWARE

Y=fO(X{X IxeA})

Y{y ly p}fl(x{x xeal1 YyIyAP f2(xe (A-a)})

(a)

z=fO(x,y)

Z 1(x{xIxex}I'{ylye}) Z=f2(X{xIxeX} Y{ylyyo})
(b)

Z=fo(x,Y)

Z{Z ze0= f1(X{XXER XY(Y IYEQ}) Z{Z zC01=f2(X{X X X}XY{Y IY¢E)
(c)

Fig. 6. Mechanism for error handling. (a) Error occurrence via parti-
tion decomposition (a C A). (b) Error detection and recovery via par-
tition decomposition. (c) Error detection and rejection via partition
decomposition.

xl / yI{X!jx}' Y{ y y 'qf5(W (X XED}b}) sl=~(
(a)

y=f0(x)
i P unless error then A

Y=P(X{xlf(x)E (B-b)}) y=A(fxIf(x)eb})

(b)
Fig. 7. The relationship between error detection and error recovery
(b c B). (a) Formal control map (where P represents the primary
formulation and A represents the alternate formulation, i.e.,
PV(PAA)). (b) Representative control map with abstract control
structures where P and A are partial functions of P' and A', respec-
tively.

completely define control. An abstract control structure and
its subfunction interfaces [such as seen in Fig. 7(b)] can then
be used as the nodal set of a controller.
An implementation language construct for error recovery

such as C unless error then B would imply that alternate func-
tion B is invoked for any error signal detected from C. The
nodal set ofB or C may also include error recovery or detec-
tion operations. In the event that an alternate function is not
available, an error detection operator must account for assign-
ment of the null value to output variables. A nodal set for
such a formulation might be C unless error then reject.
Error recovery philosophy within HOS does not include

arbitrary procedures for system errors to replace invalid values
on an interrupt-like basis to continue a calculation. For HOS,
a system error signifies return to the controller only. Thus, an
error, caused by a negative value submitted to a square root
function, would never return a substitute value (such as
zero, as is sometimes done).
In the case of some failures, one might want to recover the

software by restarting a process. A possible nodal set for such
a situation might be P unless error then refresh P where P and
all of its dependents would be terminated on every "error")
and then reinitiated (Fig. 8). Here the error occurs within P
and recovery. permits P to be restarted until P finally has a

15

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1976

y=fO(X)

x', y'= '(x) y=R(x',y')

y=R(x"',Y")

(a)

y=f(x)
/ P unless error then refresh P

y=P(x)

(b)

Fig. 8. Refresh: a recovery mechanism. (a) Formal control map (where
P represents the reinitiated process). (b) Representative control map
with abstract control structure [where P(x) is a partial function of
P'(x) .

proper value assigned to its output variables. Some errors

occur outer to P, e.g., those caused by human interaction. In
such a case, only the error detection and recovery, similar to
Fig. 4(b), would be required.
In the event that more than one subset of the input set can

be rejected, the nodal set for error recovery for such a sub-
function might be constructed as: C unless errori then Ai.
A reconfiguration (i.e., a partition in which the potential

exists to execute more than one subfunction for a given per-
formance of the controller) is required at the level at which
the error is detected for every distinct error type. Thus, a

new configuration would still be self-consistent with respect
to interface correctness. This is especially significant for
multiprogrammed structuring in that implicit errors in timing
relationships, made invalid by a partial reconfiguration, are

avoided.
A given system can be reconfigured in real time as a result

of events. An event is a happenstance which if observed,
is an indication to the system that a condition has occurred.
On the other hand, an error is a special kind of an event in
that, if it is observed, it is an indication to the system that
something has gone wrong. Events (including errors) can

occur from within a function or outer to a function. A key-
stroke indicating an action to be initiated would be an event
outer to a function. If this keystroke were found to be in-
correct, this "error condition" would indicate an action to be
modified. In both cases, the event occurs outer to the func-
tion. Interprocess communication is an example of an event
occurrence within a function. A parity in the hardware is an

example of an error within a function.

Due to the functional elements of the HOS hierarchy, we are
constrained to specify a termination condition beyond which
the event is not valid and the function "rejects" to its con-
troller. Here, we might use A on e reject after t, where e is an
event and t is the terminating condition. In such a way,
human interaction can be formalized as events in a multi-
programming environment.

D. HOS Analyzers
The main function of an analyzer is to guarantee that a

given hierarchical system is consistent with the axioms. Ad-
ditional analyzer phases complement the main function so as
to efficiently implement a given system for a computer.
Automatic interface analysis is provided on a static basis
(without source code execution) by the Design Analyzer and on
a dynamic basis (during real time) by the Structuring Executive
Analyzer.
Design Analyzer: Real-time software systems cannot be ex-

haustively tested. The intent of the Design Analyzer is to
exhaustively and statically verify a given software system,
defined according to the rules of HOS, for interface correct-
ness. Interface errors in multiprogramming or multiprocessor
systems are caused by data or timing conflicts. Given the HOS
control system, it is possible to not only design a system with
a known and small finite number of logical interfaces to verify,
but to prevent both data and timing conflicts. Thus, with
the Design Analyzer, the more expensive methods of simula-
tion and/or dynamic verification can be limited to unit per-
formance testing.
There are four phases to the Design Analyzer presently in

development. Phase 1 will check a prototype software system
design for interface correctness. In addition, a software sys-
tem control map, showing all functional relationships of the
prototype system, will be automatically produced. Phase 2
will determine where performance testing is necessary. This
will distinguish between nodes that require proof of perfor-
mance techniques for self-contained nodes versus those that
require additional simulation techniques for nodes that inter-
face with external systems. Phase 3 will provide functional
timing and memory analysis for any given level of a system.
This will either determine if a particular software system de-
sign is able to meet the constraints of "off-the-shelf' hardware
or will determine hardware capability that is necessary to sup-
port a given software system. Phase 4 will supply an auto-
matic programmer to either convert from the HOS language
to an intermediate language or directly for computer execution.
The output from this phase could include information for the
efficient use of hardware and information for the next most
immediate lower architectural virtual layer.

If HOS methodology is maintained throughout a develop-
ment process, it is envisioned that functions and their relation-
ships will be able to be compared from analyzer results at each
software phase of development.
Structuring Executive Analyzer: The Structuring Executive

Analyzer is a lower virtual layer module with respect to a
given hierarchical HOS system in its dynamic state. We intend
the structuring executive to implement, in real time, multipro-
gramming control constructs. The operating system require-

16

HAMILTON AND ZELDIN: DEFINING SOFTWARE

ments of the structuring executive are to handle aspects such
as man/machine interface, hardware/software interface, error
detection and recovery, real-time reconfiguration, dynamic
allocation, analysis for timing and memory limitations, and an
axiomatic analysis of the system in real time.
The real-time implementation of control constructs assumes:

1) an invocation mechanism, the schedule, to be used to in-
voke a module dependent on time, relative priority, event or
frequency; and 2) a restart mechanism, the refresh, to cancel
an active node and all of its dependents and then to reinitiate
that node with or without a new element of the input set.

Fig. 9 shows a hierarchical HOS system example in which
processes are invoked via a schedule. Selected nodes can be
reinitiated when an event ei where i C I and ei C E, occurs
outer to process f. Event e1 may occur dependent on a man/
machine interface selection or a system error. If node A2 is
reselected, A2 and all of its dependents are terminated and
then reinstated, possibly with a new element of the input set
available so that a new option could be selected. In this case
A3 would be reinitiated but A1 would not be reconfigured.
The man/machine interface aspects of the structuring execu-
tive allow for the human to interact with a given system at
any node. If sequences selected are not compatible, the
Structuring Executive Analyzer would detect an axiomatic
error and automatically recover the system via a refresh
mechanism.
In addition, the human can select any reconfiguration of

nodes in real time without concern for introducing errors
into the system. Thus, the man/machine interfaces with each
HOS system are multileveled, multilayered, and can be multi-
configured. For example, an avionics pilot would not need to
memorize the order of a complicated crew selection list, since
the software would provide automatic error detection and
recovery.
Analysis can be provided at required nodes by the execu-

tive, since the capability exists to provide timing and memory
limit requirements for selected nodal families in advance. For
example, if the throughput of a function is larger than a given
limit within a specific length of time, a refresh could be used
to restart or selectively restart a function with an option to
include only the higher priority functions.
The structuring executive can provide reconfiguration in

real time by a reordering of priorities based on instantaneous
human or hardware inputs to a system. In the restructuring
process, the structuring executive always maintains the relative
timing relationships for each nodal family (and thus for a
complete system) based on the fixed relative ordering relation-
ships defined for each nodal set.
Both the Design Analyzer and the Structuring Executive

Analyzer perform equivalent functions. 1) Whereas the Design
Apalyzer checks for interface errors statically, the Structuring
Executive Analyzer ensures that the correct interfaces are
maintained during real time. 2) Whereas the Design Analyzer
determines where performance testing is necessary, the Struc-
turing Executive Analyzer determines where human interven-
tion is necessary. 3) Whereas the Design Analyzer predicts a
potential resource problem, the Structuring Executive Analyzer
detects and recovers from an actual resource problem. 4)

Whereas the Design Analyzer provides an automatic program-
mer, the Structuring Executive Analyzer allows a reconfigura-
tion of nodal families in real time.

III. SYSTEM DESIGN
Use of HOS implies that the designer no longer need be

concerned with problems of interface correctness. Instead,
more attention can be focused on the problem of correct
performance specification.
Once a problem has been properly decomposed and auto-

matically analyzed for interface correctness, a system imple-
mentation can be automatically optimized for various cost
criteria where specification constraints can be minimized or
determined. For example, we could minimize verification
paths for performance analysis, minimize storage requirements,
maximize the number of tasks performed per unit time, or
determine cost-effective hardware requirements.
Although some specific constraints have been eliminated by

use of existing language constructs [9], [12], the application
of HOS implies that a restructuring of an entire system imple-
mentation can be done automatically.
Examples of automatic structuring requirements collectively

provided for by HOS for system design are: 1) controlled
branching (no undetected loops); 2) redefinition of variable
domain; 3) order independent language statements; 4) con-
trolled error recovery environment; and 5) enforcement of
local initialization. Traditional software structures often pre-
vent or discourage modification of a system for fear of mis-
interpreting hidden implicit specifications. For example, it is
important not only that programs be written in a sequential
manner [13], but that the order of execution of the lan-
guage statements can be determined regardless of that
sequence.
Example 1:

a: x=y

if z>10, x=y2.

(1)

(2)

Here, the value of x is sequence dependent, yet the program
can be written without branching (i.e., no goto's). This formu-
lation would be rejected by a language analyzer. Potential
modification to the above specification must consider the
value of x to always be dependent on the value of z even
though z does not appear in (1).

b: y=f(x)

x =f(z).

(1)

(2)
Here, it is readily determined that (2) must be executed before
(1). Thus, for the HOS specification, the formulation is cor-
rect even if (2) appears before (1).
Example 2:

a: schedule B

schedule A on not B.

(1)

(2)

Here, the intent as to the order of execution of A and B is
ambiguous; therefore, the initialization of process A and B
are sequence dependent. If statement (2) was executed before

17

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1976

y=f(E,x)
%A1 unZess el then refresh Al

schedule B1,C
y=Al({E-ei},x)

A2 unZess e then refresh A2/
schedule 22y=B1UE-el x x x=.} C

schedul1e B2IC2%/22y=A2(IE-ei-e2I,x xlx=xl3

A3 unZess e3 then refresh A3%
y=B2({E-e1-e2} ,x1 C2

Fig. 9. Refresh mechanism and its relationship to man/machine
interface.

(1), process A would be initiated before process B. If process
A was initiated before the completion of B, statement (2) is
violated in real time. The analyzer would reject this formula-
tion. Potential modification to the above formulation must
consider the potential timing interface problem.

b: schedule A (1)

schedule A after B. (2)

The interpretation here is order independent. B will complete
execution and then A will be initiated. Thus, this formula-
tion is valid for an HOS specification.
An interesting observation of the effects of explicit require-

ments for HOS is illustrated by use of the partition class for
problem specification. Suppose we wish to limit the values of
a variable and specify a formulation to assign that limited
subset of values to a given output variable. We shall show that
it is not possible to camouflage this specification within HOS
and how a traditional interpretation of a simple problem
causes interface specification errors. Suppose we represent the
specification by a simple partition of input elements:

y=if x>10h(x) or g(x).

The control structure for this partition implies that the con-
troller is controlling its own function because the entire func-
tion is of the form y = f(x) (Fig. 16). In HOS, the partition
of input elements is affected by a controller restricting the do-
main of each of its subfunctions. This is done because the
specification of a subfunction must have only the information
it needs to constrain the implementation. This specification
can be implemented by a simple if then else statement.
From Axiom 1, a module cannot invoke a function that per-

forms the same function as the function at the node of said
module. Two functions, each defined by the same sets of vari-
ables and producing the same mapping, are equal functions.

Immediate Self-Control Theorem: 12 Two functions cannot
exist such that each is defined by the same sets of variables
and one of said functions is a subfunction of the other. For if
this were the case, we can show the controller function is con-
trolling itself
Note that the partition of input elements (Fig. 10) is not

clearly specified since it appears as though each subfunction
may use all elements of x. In fact, subsequent decomposition
of y =g(x) or y = h(x) could lead to extraneous logic since
not all values of x are valid; or more seriously, functions h
and g could be inadvertently switched by an engineer un-
familiar with the original problem because the interfaces ap-
pear identical. In addition, more performance analysis than
necessary would probably be attempted for verification of that
subfunction, since it is entirely conceivable that an unknowing
engineer may attempt to verify even those cases for x that are
nonexistent to the subfunction. If input variables are not
properly partitioned, it would be impossible to automatically
restructure a system because it would be unclear as to which
nodes could be interchanged. We try to reformulate the speci-
fication by assigning x to variable z as follows:

z=x

y=if z > 10h(x) or g(x).

Here, the control structure (Fig. 11) shows, likewise, that this
formulation of the entire function y = f(x) controls itself.
Indirect Self-Control Theorem: If a function is defined, a

node defined within the tree of said function cannot be de-
fined so that the sets of input variables are equal and the sets
of output variables are equal. Again, we can show that if this

12 See Appendix II for proof of this theorem and subsequent theo-
rems stated in this paper.

18

)

HAMILTON AND ZELDIN: DEFINING SOFTWARE

Y=f (x),

y=h(x) y=g(x)

Fig. 10. Immediate self-control.

y=f(x)

z=f(x) y=f(z,x)

y=h(x) Iy=g(x)
Fig. 11. Indirect self-control.

condition were to exist, the controller function is controlling
itself

In each case, when the subset of values is represented by all
of x, we fail to follow the axioms. Thus, it is required to re-

name the subset of x to properly specify the problem. We
avoid later ambiguities as to the proper values to be used
within the subfunction:

y = h(xfx1x > 0) or g(x{xIx s10})-
Further decomposition of y = h(x{ IxI> 10}) would never re-

fer to all of x.

The above discussion illustrates the types of problems that
one can encounter by the unconstrained use of a simple if
then dse statement common to many existing HOL's. Imagine
the potential difficulties that one can encounter with more

complicated statements if there is no formalized structure
within which to work.

IV. SOFTWARE MANAGEMENT

A. Background
In the past, we used two major methods to determine those

tools necessary for future software development. Statistical
analysis of software efforts- was performed [2], and checklists
for manual software disciplines [14] were determined from
both APOLLO and SKYLAB on-board flight software efforts.
We, attempted to provide an ongoing statistical analysis of the
Shuttle on-board guidance, navigation, and vehicle control
software requirements integration effort [15], [161. We
discovered that in order for such an effort to be successful,
the process of collecting anomaly and other statistics histories
should be automated as much as possible. In addition, soft-
ware management of all people and organizations involved
must be convinced that such an exercise is a necessary one.

The APOLLO study was of great value for determining the
direction we were to follow for future software efforts. For
example, the fact that 44-percent of all the anomalies in the
software were found by "eyeballing" (2]-, prompted us to
draw a few subjective conclusions based on background and
experience. Of course, the problems of analyzing statistics
are well known. For example, if there were a system designed

such that the only debugging aid was eyeballing, there would
obviously be a huge percent of discovered problems found by
eyeballing-to be exact . . . 100-percent! And, the number
of problems found will always be less than the total number of
existing problems in a given system. But, when we analyzed
APOLLO on-board software data, we considered several sig-
nificant factors: 1) the software management structure forced
eyeballing to be a key part of the verification process [14];
2) the most sophisticated dynamic verification debugging pro-
cess known at the time of APOLLO was used to verify soft-
ware [141 13; 3) there were no pure software problems found
in the on-board flight software for all APOLLO flights [17].
In addition, we found that flexible software systems are a key
to managing software developments. A case in point is the
APOLLO on-board asynchronous systems software. If the
APOLLO Guidance Computer (AGC) systems software had
not been asynchronous, the development process would have
been much more expensive, much longer, and at least one of
the APOLLO flights would have been a disaster [18].
The systems software of the on-board flight software for

APOLLO consisted of a powerful set of asynchronous mod-
ules: the scheduler [19], the display interface [20], and the
restart modules [21]. Although the development of these
modules began in the early sixties, the first time they were
exercised together on an actual flight was for APOLLO 7
(1966).
The scheduler was able to schedule modules based on

priority or time. The display interface module was not only
asynchronous but was also multileveled and multilayered.
That is, the astronaut was able to interface interactively with
the on-board software at the top level of a msision phase as
well as at the lowest level of a mission module in a hierarchical
layout of a mission sequence. In addition, the program was
able to override a current display with one of higher priority.
The restart module was able to store information for all the
modules in a multiprogramming environment at any given in-
stant in real time for any level in the hierarchical system. If
an error occurred, all modules could be recovered or selec-
tively recovered depending on job or time priority.
In addition, an AGC interpreter [22] was used to program

applications algorithms with higher order operations such as
matrix-vector arithmetic.
All of these system software modules had common attri-

butes: even though all users could implement control via these
modules, each system module was self-contained and its inner
contents were hidden from the user [23], [24]; each mod-
ule was designed and frozen early [25] ; no changes to the re-

13The APOLLO all digital simulator simulated the AGC bit-by-bit
and the environment (including the astronaut, universe, spacecraft,
and sensors). In particular, the simulator had a very large set of debug-
ging tools which provided prerun consistency checks; selective and re-
peatable snapshot/rollback capability; environment updates which
could advance time during nonproductive mission sequences (thus
saving hours of simulation time); monitors for dynamic runs. (e.g.,
abort conditions for flight program simulations). In addition, the
simulator included a test input language for a manual astronaut and
test set-ups, and post editing tools for summarizing selective or com-
plete mission sequences.

19

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1976

quirements of these modules were incorporated after they
were frozen. That is, each of these systems software modules
was truly on a lower virtual layer [141 than the applications
modules.
When we analyzed the anomalies found during the integra-

tion effort, there were no problems discovered in, or com-
municating with, any of these systems modules. That is, all
the interface problems found during the integration efforts14
were a result of one applications module interfacing with
another applications module.
Once the initial statistical analysis was performed, we further

analyzed and categorized the anomalies and then determined
rules which would have prevented each class of anomaly. We
also refined the checklists for all disciplines of software, in-
cluding the design, implementation, verification, documenta-
tion, and management phases of software [25]. We found
out to our surprise that the refined manual checklists were
identical- for each discipline. We categorized these checklist
items in order to decide those manual processes which could
be automated for the software development process. As a
result, we found that many of the manual processes, as well as
the more conventional tools needed to assist these manual
processes, could become obsolete. For example, now that
logical testing can be provided statically and automatically by
the analyzer, there is no longer a need for a manual logical
verification checklist [251. In addition, there will no longer
be a need to dynamically exercise the software for interface
correctness. From these efforts evolved the formalized system
HOS. With a formalized system, it is possible to formally
manage software systems as well as to automate many of the
tasks of system management.

B. Modularity as Defined by HOS
Each controller in an HOS system establishes the communi-

cation15 network among its subfunctions. This means that
functions on the same level cannot control the communication
with each other, but they can communicate with each other.
In fact, all functions that are specified to communicate with
each other must exist on the same level. Thus, it is possible
for management to determine immediately, as well as auto-
matically, from a management control map (which is equiva-
lent to the software control map), those functions which are
dependent on each other.
The invocation (Axiom 1), access (Axioms 3 and 4), element

(Axioms 2 and 5), and ordering (Axiom 6) control relation-
ships can be determined for any given module by knowing
only the relationships among members of its own nodal
family. From the control relationships of a module with
respect to its nodal family, hardware memory requirements,
absolute and relative timing requirements, throughput and
transput can be predicted and, later, actually determined for
every node at any level of a given system. If, for example,
partitioning studies are necessary for multiprocessor configu-
rations, a determination can be made on a level by level basis

14Seventy-three percent of all problems found during the APOLLO
integration effort were interface problems [21.
1sCommunication: the specification for the transfer of elements

between functions.

where it is feasible to partition for different processors, where
it is feasible to perform parallel processing, or where timing
constraints require functions to be dedicated to the same
processor.
To understand a management scheme for HOS, it is neces-

sary to clearly distinguish functions, modules, operators, and
variables and to show the relationship of each of these units
to a general library concept. A function is defined by the vari-
ables of the input set, the variables of the output set, and the
set of operations of the nodal set. When the nodal set is shared
by more than one controller, i.e., that nodal set exists as a
member of a library, that nodal set is considered to be a
module.
In this respect, we consider the library module to be equiva-

lent to an operator: to function, we require the operands,
i.e., variables of the input set and variables of the output set.
As an operator, the module can reside only once in the com-
puter and yet appear in many places on the system control
map. As an operator, the module is self-contained in that it
can effect a mapping and yet never affect the system: it can
never control access to outer system data, can never effect
the invocation of outer system modules, and can never effect
the ordering of outer system functions.
Once a nodal family is verified as a module, the module, as

an operator, is placed into a general library. These "frozen"
operators can be collected by various controllers to form a
new system [25]. When an operator is controlled, variables
of the input set and variables of the output set are specified,
and that newly formed function becomes a unique node of a
system.
Uniqueness Theorem: Each node of an HOS hierarchy is

unique, ie., two functions cannot exist within the same
hierarchy such that the same relationship exists between input
and output elements and the same sets of input variables and
output variables are defined for each function.
But y = f(x) as a unique node does not imply that variable

y, variable x, or operatorf cannot appear individually at other
nodes of the control system. For example, variable y must ap-
pear on the next most immediate lower level if y =f(x) is
decomposed at all.
Since a module controls the creation of its own mapping,

an operator can appear at more than one node of a control
system. For example, the process of recursive formulation of
a function y = R (n) (cf. Fig. 5) for HOS is essentially a combi-
nation of partition and composition in which the function,
representing one subset of input elements, invokes the opera-
tor of the original module; the function representing the other
subset of input elements is invoked after the last recursive
step. Thus, operators can indirectly invoke themselves as in
the case of operator R. Also, operators can be invoked from
more than one path in a system as in the case of operator B.
Since each node is unique when it is controlled and each

nodal set is a self-contained module when it is not controlled,
we could form a library of nodal sets each describing a nodal
family. The operators of each nodal set would appear as other
library modules. The hierarchical relationships for a system
where the nodal sets all appear in the same library could be
determined automatically. Thus, with a library of this type,
we could provide a mechanism to automatically restructure

20

HAMILTON AND ZELDIN: DEFINING SOFTWARE

any HOS system. This means we can collect any set of nodal
families to form a new system.
With this approach, many systems can be collected for dif-

ferent missions or different mission configurations. The same
library can be used by all engineers in a group or by several
organizations on a project. Throughout the development of a
project, the functions and interfaces are maintained. With an
automatic programmer or a translator, this process can be pro-
vided for automatically.
At the functional level, the modules are machine and imple-

mentation independent. At this stage, commonality and
transferability among users can be maintained. Modules can
be used over and over again. Changes can be made to the sys-
tem on a module by module basis. The affect of the changes
can be tracked automatically by means of the formalized defi-
nition of all the interface paths. With such knowledge, cost of
changes as well as the life-cycle cost of a given system can be
predicted. The complete knowledge of a module and its
interfaces can also be used to measure programmer performance
as well as to predict the size of future efforts more accurately.

C. Frozen Module Management

Given today's technology, it is recommended that each soft-
ware module go through three phases of development [25].
The first phase defines the functions and their interfaces. The
second phase defines the architectural characteristics of the
system (hardware dependent, implementation language de-
pendent, and resident software dependent). This phase main-
tains the functional relationships of the first phase. The
third phase defines the actual execution code for the imple-
mentation of the previous phase.
Each "frozen" module is accompanied by automatic docu-

mentation. If a revision is made to a module, the documenta-
tion is also automatically updated. The categories of recom-
mended documentation are: 1) Automatic structured design
diagrams which show an ordered sequence of program flow.
For the Space Shuttle requirements integration effort, this
automated tool (designed [26] and developed [27] at The
Charles Stark Draper Laboratory, Inc., Cambridge, MA) has
replaced the manual production of flowcharts.'6 2) Auto-
matic control maps which show the functions and their rela-
tionships (this includes both the data flow and the operators
for each function). 3) Automatic narratives in which variables
and key words can be updated with program changes.
Each module evolves from one development phase to the

next. The documentation for each module is also an evolve-
ment from one development phase to the next. In this way,
there is never a new development effort for a new phase, but
always a continuation of the previous phase. The documenta-
tion is never obsolete, but is always automatically produced
for each new revision of the module.
Someday, the only phase that should be required for soft-

ware development will be Phase 1. Phase 2 will not be neces-

16Twenty out of 100 people were totally dedicated to the manual
production of flowcharts in the Computer Science Division (formerly
the Program Development and Verification Division) of The Charles
Stark Draper Laboratory, Inc., during APOLLO.

sary, since implementation mechanisms such as hardware will
be flexible enough to accommodate functional requirements.
There will not be a need for an intermediate HOL, and we will
no longer have to live with resident software which requires us
to alter the requirements. Finally, Phase 3 will no longer be
necessary because code will be produced automatically from
Phase 1 requirements.

D. Assembly Control Supervisor
The organization of personnel involved in a software develop-

ment process can correspond on a one-to-one basis with a
given HOS control structure. For example (Fig. 12), the top
level software system S corresponds to the Assembly Control
Supervisor (ACS). The ACS manages the official assembly of
software module S by monitoring the work of managers
ACS, and ACS2. The lower level software modules S, and S2
must be given official approval before being allowed into the
official assembly controlled by the ACS.'7
Likewise, ACS, manages the official assembly by monitor-

ing the activities of managers ACS,1 and ACS21. This manage-
ment assignment process can be nested as deeply as desired.

It is very important to note that the software control struc-
ture is equivalent to the management control structure: manag-
ers at the same level do not determine interfaces with each
other, but they do communicate via channels set up by the
most immediate higher level manager.
This method can, in addition, complement other forms of

software personnel management [28]-[301. For example,
if the chief programmer concept were to be used for personnel
management, the ACS, ACSI, ACS2, and ACS21 would be
the same person. However, the assembly control management
system allows for additional managerial flexibility: 1) the
ACS approach can be used for a small system or a very large
system; 2) a project is never forced to be dependent on one
individual; 3) modules can be developed off-line at any level
and can be called into any official library providing an HOS
structure is maintained; 4) a manager is always able to track
modules developed under her/his supervision; 5) a manager
can control all decisions related to intemal module develop-
ment without affecting other managers or modules; 6) changes
can be made reliably and efficiently, since improper interfaces
can be detected by the Design Analyzer; 7) system modifica-
tion (personnel or software) can be tracked automatically
during the entire development effort since every node in the
system has a unique identification; 8) the management struc-
ture shows the relationship between groups and organizations
within the system structure even though an organization acts
as an "operator" and physically resides in another geographical
location; 9) modules can be developed in parallel.

E. Reliability Versus Efficiency
There is almost general agreement that structured techniques

are better than nonstructured ones. It is also generally agreed
that a formalized method of structuring systems is necessary
since every programmer or organization not only has different
ideas of what a structured system is, but also has a need to
measure the correctness of a given system structure.

17Top-down/bottom-up official building process (cf. [26]).

21

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1976

(a) (b)
Fig. 12. Management structure and its one-to-one correspondence to
the software structure. (a) Management structure. (b) Software
structure.

Since structured programming concepts were first intro-
duced [13], questions concerning timing and memory effi-
ciency have been raised. The same questions are brought up
again for HOS. Contrary to what we expected from initial
studies, the process of structuring an algorithm with HOS
would often be more efficient than with conventional methods.
This was no doubt true because complete attention was given
to the process of structuring.

It is also true, however, that one can look at a system manu-
ally in which the structuring is correct and more easily change
the design to be more efficient. Of course, the reliability may
be compromised if this process is necessary.
The recommended procedure is to always structure at the

functional level using the axioms. The system should be de-
signed as if it were to communicate with an asynchronous
executive (one which allows hardware or software interrupts),
especially if the system is intended for real-time application.
This procedure allows for functions to be described in a natural
state; whereas with a synchronous approach, the functions are
divided into unnatural time slots that are implementation
dependent and, of necessity, become interrelated to other
system functions.
During the initial design process the functions and their inter-

faces are determined, which include timing and memory re-
quirements for future implementation. At this time, it is pos-
sible, therefore, to either define hardware requirements for
computation or to determine if the system can be built with
"off-the-shelf" hardware [311.

If the existing hardware is not adequate, it is much easier
and more reliable to delete capability and tune up for effi-
ciency within a formalized structure than it is with a con-
ventional system with no formalized structure. It is hoped
that someday solutions to efficiency problems will be more
powerful hardware, rather than a compromise of software
reliability.

V. RESULTS
HOS has been applied manually on two major projects. On

the Shuttle Flight Software Requirements Integration effort
at The Charles Stark Draper Laboratory, Inc., we partially
applied the axioms to several algorithms at the functional
level. On the DAIS avionics project the software requirements
(an integrated avionics system) [32], [33], link editor (inter-
module consistency checker), and the operating system (fed-
erated multiprocessor) [34] have been defined with HOS

Used for all relations and
Boolean expressions.

Used for invocations
(explicit and implicit).

Fig. 13. Design diagram conventions.

techniques. The Shuttle flight software is real time, and
multiprogrammed. The DAIS software will be resident in a
multiprocessor environment.
We have found that the use of HOS for system design clari-

fies the intent of the designer and simplifies problems origin-
ally approached in a traditional manner. In particular, changes
were much easier to make to those algorithms designed with
the axiomatic approach, and these algorithms were much safer
to integrate. Basically, the key differences between the HOS
algorithms and those designed with conventional approaches
are that the HOS modules never have knowledge of their users
(i.e., callers, schedulers, etc.). They simply, as does an add
instruction or a sum routine, perform a function for a user.
Thus, we end up with a system of "instruction-like" mod-
ules. Examples of such instructions in an avionics system
might be navigation, guidance, or vehicle control.
Certain design aid tools in support of the basic HOS method-

ology are currently operational. For example, our automatic
design diagrams (structured flowcharter and data intersection
analysis tools) are now being used by several organizations in-
volved in the Shuttle project [35]-[38]. Structured design
diagrams are produced automatically from HAL source code.
Programmers are able to obtain this output by simply inserting
an extra job control command at the program compilation
step. Prior to the automation of the structured design dia-
grams, programmers and engineers produced design diagrams
manually for the purpose of structuring an algorithm before
it was coded. Now, the automatically produced design dia-
gram is used as a comparison with the original manually pro-
duced design and as a means of producing up-to-date and
automatic documentation of the computer program.

Fig. 13 illustrates the two conventions used in generating
design diagrams. Lines connect nested decision levels and
linear execution flow. Execution flow is assumed to return
in line at the completion of every object of every decision.
Table I shows simple examples of the design diagrams for

equivalent source code. In addition, the equivalent control
map is also shown.
We are presently involved in building a prototype HOS

Analyzer. 18 For this prototype, we are translating HAL
language [39] source code to an HOS control description.
The control description is the language independent input to
the analyzer (Fig. 14). From this research effort, we found
that a specification language in which HOS functions could
be formulated directly would have simplified the analyzer
task. With an HOS specification language, we could have
formalized a given problem and then translated that specifica-
tion to HAL. Without such an aid, we have defined a particu-
lar grouping of statements to represent an HOS function. Each

ilnternal Charles Stark Draper Laboratory Independent Research
and Development Project "Automated Computable Systems."

22

HAMILTON AND ZELDIN: DEFINING SOFTWARE

TABLE I
PROTOTYPE ANALYZER EXAMPLES

CONTROL MAP REPRESENTATION STRUCTURED DESIGN DIAGRAM HAL SOURCE CODE

VV V=M*-IV/S = F(M,V,S) v= I V/5; V = M V/5;

COMMENTS

(1) An assignment statement.
(2) A matrix data type (M) vector data type (Y) and scalar data type (S) and the availability of the

corresponding set of operations for these data types are assumed.

y f1(x) = x2 if x>1O then y = x ;

y 2f (x~~~~~~~~'~~~~) ~if x>lO> else y = 2;
Y{yjy=x2}=f11(xfxx>101) Yjyjy=2}=f21(x{xx10}) y = 2;

COMMENTS

(1) If f21 were modified so as to contain the relation x>20, the analyzer would detect an extraneous path.

(2) Suppose the THEN branch assigns y as shown, but the ELSE branch were to assign a variable other than y.
In this case, the analyzer would detect an error.

(3) If f21 were modified so as to assign a value to x, the analyzer would detect an error.

(4) If f1l were modified to CALL f21, the analyzer would detect an error.

(5) A constant function is specified by restricting the elements of the output set (cf. node f2l)

CONTROL MAP REPRESENTATION STRUCTURED DESIGN DIAGRAM HAL SOURCE CODE

y=f1 (x)

Y=f2(d,x) x',d=f(x)

d=sin(x) x'=x

Y=f3(d{dldxj0}' Y=f4({d d,l0}')

Y=f5(d{dld>,1x}''{xIx3} Yf6(d {dId>0}'x{xl 3}

y=tan(e) e=f d })

. _ _

E Y=X2; ~ Y

if sin x>.10

then i f x>3
do;

then y = tan(x);
else y = 2x;

end;
else y = x2;

COMMENTS

(1) Three nested levels of logic flow are shown on the design diagram.

(2) Five levels of data flow are shown on the control map.

(3) Each function must appear as a node. A relation determines the partitioning of the elements of the input
set. If an extraneous path exists due to an inconsistency in the specification itself, the analyzer will
not detect such a path. For example, suppose sin(x)>.10 were modified to be 2x<3. In this case the analyzer
would not detect the fact that f6 will never be executed. On the other hand, all logical inconsistencies
among nested relations are checked for extraneous paths. For example, suppose sin(x)>.10 were modified to be
x<2. Here, f6 would be shown to be logically inconsistent by the analyzer. It is not clear that the removal
of all such paths is the best way to completely design a system. But, it is clear that if we know where these
paths exist, we can explicitly make a design decision as to whether to remove such a path or not.

(4) The use of composition referred to by node f7 is key to the use of library modules.

(5) e is a local variable.

I

I

23

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1976

TABLE I (CONTINUED)

CONTROL MAP REPRESENTATION STRUCTURED DESIGN DIAGRAM HAL SOURCE CODE

do;
SCHEDULE r1 F2 3%

Y f(x) CALL Designate_Priority(F) Assign P; CALL Designate Priority
Schedule F at priority Pi; (F) Assign P;

=F3(w) Schedule Fa P Schedule F1 at priorityyF (w w=F2(z) z=F(x) Schedule F2 at priority P2;Pi
321e FSchedule F2 at priority

Schedule 2 at priorityP2;
Schedule F3 at priority
P3;

end;

COMMENTS

(1) This set of HAL statements implements the invocation of processes at a given level so that the priorities
of the processes are ordered and are relatively lower than the controller process.

(2) F is an array of name variables. P is an array of numbers. The values assigned to P are ordered from
highest to lowest. The assignment of values (rather than a relational form of priority) is necessary
because of the restrictions of HAL.

(3) The analyzer assumes Designate Priority to be a lower virtual layer function, i.e., Designate Priority does
not appear on the control map.

(4) In this case, the analyzer checks the syntax in that the number of scheduled processes must be consistent
with the number of processes assigned a priority by Designate Priority.

(5) See Appendix I for a description of a real-time example using this concept.

HAL
Sou ce-
Code

Axiom
Vatdity

- Choechz 6o
Anatyzeo

Contot
Do ctiption

Fig. 14. Analyzer prototype.

grouping is blocked by enclosing it within a do ... end
statement.
These groupings are limited to the basic forms of partition,

composition. For partition, we use the HAL control state-
ments if then else and case, and restrict the variable usage.
For composition, we use a do... end group and make
use of the temporary variable facility in HAL for variables
referenced and assigned within the do ... end which, in
effect, restricts the HAL scope rule. For recursion, we are
devising a source macro because HAL does not allow recursive
calls within the language. In addition, some statements (e.g.,

goto, while A do B) are considered illegal for this prototype
analyzer. A preliminary HOS control map can now be gener-
ated for the invocation of closed blocks [40]. A complete
control map which details functional relationships to the state-
ment level is now in development.
Whereas the structured design diagram indicates execution

flow of the actual algorithms for a given system and the data
intersections between explicitly invoked modules, the control
map shows functions and their relationships. For example,
in a control map, the interfaces of the data are shown hier-
archically. Thus, in the future the automatic data intersec-

24

HAMILTON AND ZELDIN: DEFINING SOFTWARE

tion feature in the design diagrams may no longer be neces-

sary when the control map is completely automated. Ideally,
the control map should be designed before the structured de-
sign diagram, since it is used as a guide in following the axi-
oms. The control map can then be used as a guide in producing
a structured design diagram. For, inherent in the proper con-

trol map is the resulting proper decomposition for both func-
tional flow and data flow. (Note here that the use of basic
structured programming rules could violate HOS, but HOS
does not violate structured programming concepts.)

Specification language ground rules, structuring executive
operating system design, and various other verification and
documentation aids are in the preliminary design stage.

VI. SUMMARY

The key to software design, development, and management
is reliability. The most important aspect of developing reliable
software is that, of course, it WORKS. The second most
important aspect of a reliable software system is that its de-
velopment and maintenance is far less expensive than that of a

conventional system. The costs of developing reliable soft-
ware will be drastically cut, since by its very nature reliable
software is flexible and it is truly modular. Modules for both
applications systems and support tool systems can be used
over again and collected for different configurations or for dif-
ferent applications. Modules can be developed independently
of the hardware and, in fact, can be used with different and
changing hardware systems. Applications modules can be sepa-

rated from lower virtual ("systems software") modules. Mod-
ularity can be capitalized on to single out parts of systems
which are secure from those which are available to common
users. Modules provide a means for defining software units
and milestones which can be measured. Thus, it is possible
to more accurately monitor subsystem usage and predict
life-cycle costs. Modularity allows for a system to be changed
automatically during development or in real time where that
change and its affect can be automatically monitored and
recorded.
The key to software reliability is to design, develop, and

manage software with a formalized methodology. The formal
methodology of HOS is dedicated to systems reliability. We
have found that the enforcement of formalized rules on a

large project with many organizations is almost impossible
without the aid of automated tools.'9 A given system, de-
scribed with an HOS specification language, enforces the
axioms with the use of each construct. A system defined in
HOS is analyzed automatically for axiomatic consistency by
the Design Analyzer on a static basis, and by the Structuring
Executive Analyzer on a real-time basis. The ultimate aim is
for the specification language to incorporate all features of the
Design Analyzer into the static analysis of the language con-

19When the automatic structured flowcharter was first introduced,
many programmers were converted to structured programmers over

night, since this tool not only helped to enforce structured program-
ming, but it also saved the programmer the work of manually producing
a flowchart.

structs, and all features of the Structuring Executive Analyzer
into a real-time, dynamic analysis provided by the language.
The support tools of software systems can now be defined

with HOS as well as communicate with formalized HOS
systems. Since HOS is used throughout all phases of de-
velopment and for all disciplines of development including
management, design, implementation, verification, and docu-
mentation, the same software support tools can be applied
for all phases and all disciplines of systems development.
The statistical analysis and creation of manual checklists of

previous large software efforts provided us with reliable
methods to be incorporated into future developments. It is
clear that such efforts should be encouraged as ongoing
projects for any large software effort. A formal methodology
is now available as another method for understanding more
about software itself, as well as about future requirements
for software development. One of the aspects of this method-
ology is that so many of the design considerations of a con-
ventional system that were ad hoc (such as asynchronous pro-
cess handling, error detection and recovery, interface correct-
ness and data management) are now formally related to the
inherent structure of each HOS system.
With the axiomatic approach of HOS now available, we have

already been able to determine, from theoretical considera-
tions, many more tools and techniques which can be de-
veloped based solely on the fact that there is now a way to
design and develop them. And the reason for this is that we
are able to more clearly understand software systems, since
there is a formal means to describe them. With a formal
means to describe systems, there is an automatic way to com-
municate with them. With an automatic means to communi-
cate with systems, there is now a means to exhaustively verify
the interfaces of a given system automatically and statically.
With a means to build reliable software systems, we are re-
minded that those same means can be applied to developing
other systems-for software itself is, after all, a system.

APPENDIX I

FORMULATION

Let us describe a control system in which all logical possi-
bilities of control can be represented as a tree structure. Each
node (any point at which two or more branches intersect) of
the tree represents a unique point of execution of a function.
Each node and all its dependents represent the unique tree
structure T.
A function, F: Q -÷P or P = F(Q), is a mapping from the

input set Q to the output set P. Each element of the input set
is expressed as a unique element of the output set.
We define an A-dimensional input space by the values of the

A variables (xl, x2 XA). And we define a B-dimensional
output space by the values of the B variables (Y1 ,Y2 ... YB)-
An element of the input set q E Q is a particular point for
(Xl,X2 ...XA)- An element of the output set pEP is a
particular point for (y1 ,Y2 ** *YB).
In order to execute a function, we must define a controller,

the module. The module exists at the node just immediately
higher on the tree relative to the functions it controls.

25

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1976

P11 FI1(Q11) P21'F21(Q21 P31F31(Q31 P12F 12(Q12) p22 F22(Q22' P32-F32(Q32)

/.- P122'F12PQ122) P222-F222(Q222) P322 F322(Q322)

pn. m Fn nm1Qnm

Fig. 15. Formal control system: Snjmi [Pnimi = Fnimi (Qnimi)I -

A module has the responsibility to perform a function. For
that purpose, the module controls functions only on the im-
mediate lower level. For implementation this is done by in-
vocation (e.g., call20 or schedule), by assignment of access
rights (e.g., parameter passing or restricted use of global
variables), and by the determination of the ordering of the
functions on that level (e.g., priority assignments). Every
function receives input from and produces outputs for its con-
troller either directly or indirectly. Every-node is a module
with respect to its immediate lower level functions. With re-
spect to control relationships, the elements of the lowest level
of any tree are referred to only as functions; the highest node
of the entire tree structure is referred to only as a module.
The following symbols are used in the discussion below:

V
A

V

c
U

0

6

1!
a- b
{}

for every

logical "and"
logical "or"
element of
subset of
union of

controls
does not control
interrupts
does not interrupt
there exists a unique
logical "ifa then b"
set of

Definition: The formal control system (Fig. 15) is one in
which each module S has a unique identification

Snim i-[Pn.mi = Fnimi (Qnimd)]

20A call can be explicit or implicit, e.g., y = z2 + 3 is an implicit
call.

nnmi defines a particular level of control in which i is the
nested level of the module. i = 1 implies the level directly be-
low the top level. ni is the node position (from the left) rela-
tive to its most immediate higher node, mi. At each level there
is a set, Ni, of node positions, i.e., ni ENi. m'i is the recursive
relationship m'i ni-, mi-, defined for i > 2. If i = 2, m. =
n;_ If i = 1, nim-i =ni.
Axiom 1: The module Snm- controls the invocation of

the set of valid functions on its immediate, and only its im-
mediate, lower level, {Fnij1 n,mj}. That is,

-Vb ni+ICENI+12! Snrni,i l(Snim Fni+j nimi)
A((Qimj#ninm) - Sn.m. 95Fnjm)]* (1)

Thus, the module Snimi cannot control the invocation of
functions on its own level.

It also follows that the module Sn,m, cannot control the in-
vocation of its own function.

In addition, the "no goto" concept of structured program-
ming is therefore consistent with the control system. For
example,

If "C goto D" exists, C loses control. e.g., C can con-
trol itself to terminate. In addition, if "D goto C" ex-
ists, D is controlling C and, in effect, is controlling
itself.

Theorem 1.1: A module C cannot invoke function D,
which, as a module, invokes function C, for then C would be
controlling- itself.

CO(DOC).
Corollary 1.1.1: A logical antecedent cannot be assigned

by its consequent.

e.g., If function C is comprised of "if G then D," G
cannot be assigned by D.

Theorem 1.2: If a function from leveli+1 is removed and
the controller module at leveli still maintains its same map-

26

HAMILTON AND ZELDIN: DEFINING SOFTWARE

ping, the function at leveli.,11 ,Fnm is extraneous. The
extraneous function is a direct violation of Axiom 1, for if
the function is not removed, Sn1mi.P Fn1+j nimi
NOTE: Violation of Theorem 1.2, in common practice,

manifests itself in modules with many user options. With
respect to the entire system, the use of extraneous functions
proliferates test cases and complicates interfaces.
Corollary 1.2.1: Consequents of a decision do not inter-

rogate the antecedent for this would result in an extraneous
function.

e.g., "if G then D" where D implies "if G then E"
must be reduced to "ifG then E."

Theorem 1.3: Assignment to a variable is restricted to one
process when more than one process is concurrent. This is
true because modules may only invoke valid functions, and a
valid function has only one output value for a particular
input value.
Axiom 2: The module Snimi controls the responsibility for

elements of the output space, of only Pn,m1, such that the
mapping Fnimi (Qnim1) is Pn,m,. That is,

Vj nimi a! Snimi, [(Snimi oPn,m) A ((njmj# nimi)
> nimi itPn")] * (2)

Thus, there must not exist any member of the input space
for which no member of the output space is assigned. For,
if this were not the case, we would have an invalid function.
Theorem 2.1: There may be more than one formulation for

a particular function. It is only necessary that the mapping be
identical. Equivalent computer functions may require a dif-
ferent formulation due to timing restrictions, etc.
Axiom 3: The module Sn*m* controls the access rights to

each set of variables {Yni+nimi} whose values define the
elements of the output space for each immediate, and only
each immediate, lower level function.

Vj,Vn+IENi+ a! Snimi, I((Snimi 0 Yni+I nimi)
A ((nimi 0 nij nimi) Snimi 0 Yn m,)] * (3)

NOTE: If any two modules, Snimi and Sn.m., require the
same function formulation, the same set of computer residing
instructions can be used for the functions as long as the ac-
cess rights of the variables are controlled via Axiom 3.
Theorem 3.1: The variables whose values define the ele-

ments of the output space at leveli are a subset of the vari-
ables whose values define the elements of the output space at
level1l, that is,

1Ynjmj C { Yn+j n'imil}
Axiom 4: The module Snimn controls the access rights to

each set of variables {Xni+1nimi} whose values defme the ele-
ments of the input space for each immediate, and only each
immediate, lower level function.

VI V nilE=1 Ni+1 a! Sn1m1lL(Snimi0 Xni,l nim)
A ((nimi #/+n+1n1m,) 0 Snimi 0 Xnimi)] * (4)

Thus, the module S cannot alter the members of its own

input set, i.e., the access to the elements of the input set of
Snimi cannot be controlled by Snimi-
Theorem 3,4.1: The variables of the output set of a func-

tion cannot be the variables of the input set of that same
function. If y =f(y, x) could exist, access to y would not be
controlled by the next immediate higher level.
NOTE: Adherence to Theorem 3,4.1 simplifies error re-

covery techniques associated with parameter passing and func-
tionally dependent iterative processes.
Theorem 3,4.2: The variables of the output set of one func-

tion can be the variables of the input set of another function
only if the variables associated with the output set of the first
function and the variables associated with the input set of the
second function are variables of functions that exist on the
same level and are controlled by the same immnediate higher
node. If y = fi (x) and g = f2 (y), both functions exist at
the same level. If g = f2 (y) is at a lower level, access rights to
the input set y imply y is determined before y exists. y = fi (x)
at a lower level implies an alteration to the input set of
g=f2(y).
Theorem 3,4.3: Each member of the set of variables whose

values define the elements of the output space of a function is
either a variable of the output space of the controller or is a
variable of the input space for any of the functions on the
same level excluding the variables of its own function.

VYnimi E Yn1mi Ynimi E { Ym1 U { {Xnimi} - Xnjmj}}
NOTE: Violation of Theorem 3,4.3 in common practice,

manifests itself in modules that calculate by-product results
for anticipated users: e.g., a Shuttle module that calculates
the position vector of a vehicle might also calculate altitude,
apogee, and perigee, instead of creating separate modules to
perform the separate functions.
Theorem 3,4.4: Each member of the set of variables whose

values define the elements of the input space of a function is
either a variable of the input space of the controller or is a
variable of the output space for any of the functions on the
same level excluding those variables of its own function.

V Xnimi E Xnjm, Xnimi (E {Xmi U { { Ynimi} - Ynmij}}-
Axiom 5: The module Snim1 controls the rejection of invalid

elements of its own, and only its own, input set Qnimi, that is,

-Vj V nimi 9! Sn mp [(Snimi 0 Qn,m,) A ((nim1i nimi)

Snim. 0 Qnimj)I (5)
Axiom 6: The module Snim1 controls the ordering of each

tree {Tni+1nimil for the immediate, and only the immediate
lower level.

Vj V n,+1 E N,+1 9! Snimil [(Snimi 0 Tni+1 nimd)
A ((n1mi 0 ni+1 nimi) Snimi 0 Tn.mj) * (6)

Thus, the module S.imi controls the ordering of the func-
tions, the input set, and the output set for each node of
{ T,,11 n1m1} A process e is a function scheduled to occur in
real time.
NOTE: If two processes are scheduled to execute concur-

27

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1976

rently, the priority of a process, e determines precedence at
the time of execution.

If one process has a higher priority than another process,
the higher priority process can interrupt the lower priority
process. The lower priority process is resumed when the
higher priority process is either terminated or is in its wait
state.
Theorem 6.1: The priority of a process is higher than the

priority of any process on its most immediate lower level.
Theorem 6.2: If two processes have the same controller

such that the first has a lower priority than the second, then
all processes in the control tree of the first are of lower pnor-
ity than the processes in the control tree of the second.
Theorem 6.3: The ordering between members of any given

process tree cannot be altered by an interrupt. For, if process
A is of higher priority than process B, process A interrupts all
of B, i.e., the priorities of the dependent processes of B are
less than the priority of B.
Theorem 6.4: A module Sn,mj controls the priority relation-

ships of those processes on the immediate, and only the im-
mediate, lower level.

Vj VkVnj+j,wj+j E=-Ni+1 '! Snimi, [nhl1wi+l

> (Snimi ° (eni n2imid e j+1 nimd A ((nimi
n+j nimi) > (Snimi (enim a e nkm))]d

Corollary 6.4.1: An explicit priority relationship exists
among each pair of processes at the same level which branch
from the same most immediate higher level node.
NOTE: If the priority of process eaimi is greater than the

priority Of ebimi, and the priority of e bimi is less than the
priority of ec the controller at node mi does not control
the priority relationships of eaim, and ec,mi. To avoid a
violation of Theorem 6.4, the priority relationship of eaimi
and eqm1 must also be stated explicity.
Corollary 6.4.2: If a process enirn can interrupt another

process ew,imi, the control tree of enim1 can interrupt ew,rn1
and each member of the control tree of ew1m1
Corollary 6.4.3: Since Snim- controls the priority relation-

ships of the set of processes {eni+l nimin} then it itself cannot
interrupt any member of the processes of the control tree
{ Tnj+j nimil}
Corollary 6.4.4: A process cannot interrupt itself.
Lemma 6.4.4.1: The multiprogram statement wait is an im-

plicit decision of a process to interrupt itself at a future time,
and therefore is not consistent with the control system.
Corollary 6.4.5: A process cannot interrupt its controller.
Corollary 6.4.6: A process enim1 that can interrupt another

process en.m. affects the absolute time loss for en rn.
TheoremA .5: If the antecedent of a decision within a mod-

ule is a time relationship, the relationship is extraneous. For,
only if the relationship is removed, could the ordering be-con-
trolled by the next higher level.

e.g., "(time = tl) ->A" can be replaced by A where
the controller schedules A at time ti.
Theorem 6.6: If a function is invoked by a call or schedule,

the corresponding module of said function can invoke another
function by a call.
Theorem 6.7.- Aschedule of two processes may be commuta-

tive, but a call of two functions is not commutative.
Theorem 6.8: If a function Fnimij is invoked by a call, the

module corresponding to the function Sn,m, cannot invoke a
process. If the module schedules a process and the set of
operations of the function Fnimi is performed before the pro-
cess is executed, the module does not control the scheduled
process.
Theorem 6.9: A schedule must always cause the processes

invoked to be dependent so that the higher level maintains
control at all times.
Theorem 6.10: The maximum time for a cycle of a process

to be completed or delayed can be determined. Consider a
particular level which has N processes. The nth process has a
frequency, fn cycles per second, such that the period tn for
the nth process is l/fn, and the total maximum execution
time for that process is Atn. The jth process has a maximum
number of cycles t,j1 during time tn. Then, tnfiAt. is the
maximum time a process could consume during tn.
From Corollary 6.4.1, there exists priority relationships for

N processes such that

e1mi > e2mi ... > enimi... > eNimi-

Therefore, process n can be completed within time tn if its
maximum completion time t, is less than tn where

J
tc= tnfjA tj +A tn,

j=l

and J equals the total number of processes of higher priority
than process n on the control level of n. Also, the maximum
delay time for process n is the maximum completion time for
the process of the nearest higher priority on its own level.
THEOREM- It is possible to control all functions of any

given software problem such that one controller controls all
functions.

If we have only one level of control, every function can be
performed, all access rights can be allocated, and the ordering
between functions can be controlled.
Thus, it is always possible to perform every required func-

tion of any software system by adhering to the six axioms of
the control system.

A REAL-TIME CONTROL PROBLEM
The design of any system which does not have the potential

to assign the same variables concurrently is deterministic. In
this type of system, functions can either be functionally in-
dependent, functionally dependent, or mutually dependent.
An independent function is one in which the output set is

not the input set of another function. A dependent function
is one in which the output set is an input set of another func-
tion. Two functions are mutually dependent if the output set
of the first is the input set of the second, and the output set
of the second is the input set of the first.
The design of any system which has the potential to assign

the same variables concurrently is nondeterministic.

28

HAMILTON AND ZELDIN: DEFINING SOFTWARE

A system is able to provide for mutually dependent func-
tions to be executed concurrently if the HOS axioms are ap-
plied in real time. With such a system, the operator need not
memorize permutations of proper operational sequences. In
addition, the software system is able to handle error detection
and recovery for all operater-selected processes by simple
algorithms rather than by special algorithms for each operator
selection or by complicated table look-up algorithm schemes.
Consider a typical Shuttle example of a nondeterministic

system where the modules Ml and M2 are mission phases.
M1 and M2, if executed in parallel, could both perform the
same function of guidance, navigation, and vehicle control. In
this case, a mechanism is needed to prevent the M1 and M2
processes from conflicting with each other.
Let us now consider a dynamic scheduling algorithm (or

structuring executive). The scheduler: 1) controls the order-
ing of those modules which can vary in real time dependent
on operator selection; 2) assigns priorities to processes based
on the relative priority relationships, according to Axiom 6,
for each control level; 3) prevents a violation of the HOS axi-
oms so that no two processes can conflict with each other;
and 4) determines when the total resources of the computer
are approached. Such a dynamic scheduler would assume the
following tools: process locks, data locks, and a scheduling al-
gorithm which provides relative and variable priorities. The
process lock for each process locks out lower priority processes
other than those on its own tree from assigning data for as
long as the process is active (i.e., executing or in the wait
state). Data locks within a process temporarily lock out all
other processes from reading elements of a data block when
that block is being updated. The controller for a process is a
real-time scheduler. The scheduler invokes a process, via the
schedule statement, to automatically set a process lock, assign
a priority, and set up data locks for the process invoked.
Each scheduled process is dynamically assigned a unique

priority set which bounds unique priority sets of its dependent
processes. The priority of a process is determined by its 1)
level of control; 2) order of selection by the operator; and
3) predetermined priority relationships. The highest priority
process is, by definition, the highest level controller. Each
controller has a higher priority than the processes it controls.
In order to compare the priorities of two processes, a process
chain up the tree for each process is made until one level be-
fore the branches intersect. The priorities of the parent pro-
cesses at that level determine the priority of the two processes
in question, i.e., the process with the highest priority parent
has the higher priority. Thus, we have a system where a pro-
cess and all its dependent processes are either all higher or all
lower than another nondependent process, and all of its de-
pendents. Consider Fig. 1 to be a subset of the Shuttle system
S.

S1 ,S2,S3,S4

SI, S21 S31

Ascent mission phase, atmospheric entry
mission phase, astronaut display, and abort
mission phase, respectively.
Ascent guidance (GA), ascent navigation
(NA), and ascent vehicle control (CA),
respectively.

S12, S22, S32 Entry guidance GE, entry navigation NE,
and entry vehicle control CE, respectively.

S121 , S211 Navigation state extrapolation and measure-
ment incorporation, respectively.

Thus, for example, in Fig. 15 the relative priorities of ascent
guidance Sll, and measurement incorporation S22, are de-
termined by comparing the priorities of the parent mission
phases S1 and S2-
Each module defines priority relationships for each function

it controls. For example, S controlling {Si} might have the
priority relational information: ((S1,S2)<(S4))- S3 is a
function invoked by a call and, therefore, has the same priority
as the scheduler S. The priorities S1 and S2 are initially
equal, but their priorities (and thus, pnority sets) are decided
by the ordering of schedule invocation. Yet, S1 and S2 are
always of lower priority than S4. A typical Shuttle relation-
ship is (CE >GE>NE), where the dependent relationships
between vehicle control, guidance, and navigation are main-
tained on a fixed relative priority basis. In the latter example,
CE can interrupt NE. CE is functionally dependent on GE, i.e.,
CE uses the output set ofGE as its own input set. In addition,
a mission phase schedules NE at a higher frequency than GE.
At all times the priority relationships of CE, GE, and NE
remain fixed.

If S, is selected first, S2 cannot interrupt S, as long as
S, or any of its dependent processes are being executed.
When -S is in a wait state, S2 can execute, but only if S, is
not ready to execute. When S, is ready, process set S, inter-
rupts process set S2. If the S2 set attempts to assign data
process locked in the S, set, S2 and its dependents are termi-
nated by the scheduler. At this point the last display is re-
generated by the scheduler of the terminated process, thus
giving the astronaut complete visibility. If however, S1,
when it becomes active, attempts to assign data which are
process locked by S2, S2 is terminated since S, has a higher
priority lock than S2 . If S2 attempts to read data process
locked by SI, and these data are presently being assigned by
the other set, the S2 process waits for the S, block of data to
be updated. Likewise, S, must wait to read data presently
being assigned by S2 .

The operational levels of a system are, by definition, those
levels where the operator has at least one option. Each level
has the potential to be an operational level. Consider the
Shuttle example. The operational level S allows the astronaut
to select, reselect, proceed from, or terminate S,,S2, or S4 via
S3. Operator errors at each operational level are prevented
via the process lock mechanism. Due to HOS axioms, at a
nonoperational level (i.e., one where a conflicting process is
not initiated by the operator) an error of this type would
not occur. Without a static analyzer, however, the process
lock mechanism of the scheduler would discover the error dy-
namically. Of course, the analyzer avoids an expensive way to
find a software error.
Alternatives for reselecting or terminating an existing process

depend, to a large extent, on desired operational procedures.
The scheduler could display a "select" or "terminate" option
for each operational process. Or, the operator could request

29

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1976

the highest level scheduler which has the highest priority to
terminate a specific process. If SI is selected when SI is in
the queue, either the first S1, or the second, is terminated.
Consider two processes SI and S2, where S, has a higher

priority than S2. Scheduler SI, schedules SI,,. Slll could
have a very low or a very high priority relative to but less
than S1: but relative to S2, SI, and all its dependent processes
have higher priorities. Thus, if Slll is controlled by a do
while instead of a cyclic schedule, S2 and its dependent pro-
cesses are locked out for the duration of the do while. How-
ever, if SI,, is scheduled cyclically, S2 can be processed when
S, and its dependents are in the wait state. In conventional
priority schemes, this would not be the case, since S2 could
be arbitrarily assigned a priority less than SI but greater than
SI,,. Thus, the use of a do while construct as a substitute for
a cyclic process is discouraged. It is interesting to note that a
do while within a nonmultiprogrammed function can never
be terminated by an outside controller. Thus, in this case, one
would be advised to use a do for while instead.

APPENDIX II

Theorems directly stated in the text are presented here,
with corresponding proofs.
Immediate Self-Control Theorem: Two functions cannot

exist such that each is defined by the same sets of variables
and one of said functions is a subfunction of the other. For if
this were the case, we can show the controller function is con-
trolling itself.

Proof: If the sets of the input variables of two functions are
equal and the sets of the output variables of the same two func-
tions are equal, the mappings are either the same or different.
If the mappings are different, then the specification must be
incorrect, for the controlled function must produce the result
for its controller. If the mappings are equal, the two functions
are equal.
Indirect Self-Control Theorem: If a function is defined, a

node defined within the tree of said function cannot be de-
fined so that the sets of input variables are equal and the sets
of output variables are equal. Again, we can show that if this
condition were to exist, the controller function is controlling
itself.

Proof: Consider Fig. 16. The lower level function must
perform for its controller since y is not local. Each subsequent
higher node must likewise perform for its controller since y
is not local to any node below the highest node in which it
is a member of the set of output variables (cf. Theorem
3,4.4, [1]). The lower level must be able to perform for each
value of its input set. But the set of input variables is equal to
the highest set of input variables. Therefore, the mapping
must be the same or there would exist at least one value for y
which would be incorrect. Thus, function f must be identical
to function g. If we assign a value for y for each element of
x, then we have performed the total function for the immedi-
ate controller.
Any other subfunction at that lower level is extraneous

(cf. Theorem 1.2, [1]), because every value ofy can be ob-
tained via that one subfunction. Thus, the most immediate
controller and its subfunction are equal. We can either elimi-

Y=f (x)

Fig. 16. Proof of indirect self-control.

nate the lowest subfunction as redundant or recognize that a
formulation of this type has not decomposed the controller
and redesign. If we eliminate the lowest subfunction, we
again continue to apply the same argument until we reach
the highest node at which the equal function exists. At this
point there is no recourse other than to admit the function is
controlling an equal function.
Uniqueness Theorem: Each node of an HOS hierarchy is

unique, i.e., two functions cannot exist within the same hier-
archy such that the same relationship exists between input
and otuput elements and the same sets of input variables and
output variables are defined for each function.

Proof: Suppose the function y =f(x) existed within a
system at two different nodes. The two nodes could exist at
the same level [Fig. 17(a)]. In this case, one of the nodes
could be removed and, since the functions are equal, the con-
troller could still perform its same mapping. Thus, all but one
of the equal functions on the same level are extraneous and
invalid via Theorem 1.2 [1].

If y = f(x) appeared as a node inner to its own tree [Fig.
17(b)] the module would be controlling its own function and
is invalid via the proof of immediate self-control (cf. Section
III). Likewise, any node that can be traced up the tree or
down the tree from y = f(x) must be of the form y = f(x)
[Fig. 17(c)], via the proof of indirect self-control (cf. Section
III).
Consider y = f(x) at one node. Variable y must communi-

cate on its own level or perform an output element for its con-
troller (Theorem 3,4.3 [1]). Ify were a local variable [Fig.
17(d)], y could not communicate to any higher level because
the controller of y = f(x) could not perform an output ele-
ment for y. Thus, y = f(x) could not exist outer to the level
at which y were a local variable. Suppose, on the other
hand, that y = f(x) was invoked by its controller to perform
an output element for the controller. If y = f(x) appeared as
a node inner to any tree on the same level in which it is local
[Fig. 17(e)], it would also be invalid because y could only
communicate as an input variable, in this case, by Theorem
3,4.2 [1].
Suppose y does not communicate on its own level. The

controller ofy = f(x) must be a selector in which case y could
be assigned by another node at the level of y = f(x) or y is
not known to another node at the level of y = f(x). In the
case where y is not known to a node which exists at the same
level as y = f(x), y = f(x) could never exist inner to that node
(Theorem 3.1 [I]).

30

HAMILTON AND ZELDIN: DEFINING SOFTWARE

a:

y-f(x) 'Yf(x) 8 y=f(x)

, Y=f(x) "

y=f(x)

Yfy(x)

y=f(x)

y(x (x)

d y=f(x)

y=f(x) z=f(y)

f: <
y=f(x) y=f(x,z)

y-f(x)

h:

y=f(x)

y=f(x) Z=f(y)

' y=f(x),

g:

y=f(x) y=f(z)

y-f(x)

Y= fX z z

y=f (x)

Fig. 17. Proof of uniqueness.

In order for y = f(x) to be considered as a node inner to
any tree on that same level at which another y =f(x) node is
known to exist, the node at the same level as y = f(x) can be
of the form y = f(x, z) or y = f(z). If that function were of
the form y = f(x, z) [Fig. 17(f)], then the controller ofy =

f(x, z) and y = f(x) is an invalid function because it is pos-
sible that for a given element of x, more than one value ofy
can exist. This will be the case if we assume a selection me-

chanism (i.e., we have an invalid partition) or if we try to per-
form both functions (i.e., concurrent assignment or invalid
composition). If that function were of the form y = f(z)
[Fig. 17(g)], the function y =f(x) could not exist at any
node inner to the node y =f(z) because the variable is not
known inner to y = f(z). Thus, if y = f(x) exists, another
node of this form, y =f(x), cannot exist at the same level or

at an inner node to any other node at said level.
If y performs a direct output value for its controller, the

form of the controller must be y = f(x,,z) [Fig. 17(h)] ory =

f(z) [Fig. 17(i)].
If the controller is of the form y = f(z), x is internal toy =

f(z) and can never exist outer to y = f(z) (Theorem 3,4.4

[1]). Thus, in this case y f(x) could not exist outer to
y =f(z).

If the controller is of the form y f(x, z), it is not possible
to hav-e a node of the form y = f(x) at the same level as y =
f(x, z), for the same reasons presented above (i.e., invalid
function formulation of the controller). In order for y =
f(x) to exist at any higher level, we must perform a value for y
by attempting a higher controller of the form y = f(x, z).
Each time, the higher controller becomes an invalid function.
Thus, we have shown that y = f(x) must be a unique node of
a system.

AcKNOWLEDGMENT
The authors would like to express appreciation to L. Robin-

son of Stanford Research Institute for a most helpful and
critical review of this paper. The authors would also like to
thank A. Volta for technical editing assistance, and G. Lopes
for the preparation of the manuscript.

REFERENCES
[1] M. Hamilton and S. Zeldin, "Higher order software techniques

applied to a space shuttle prototype program," in Lecture Notes
in Computer Science, vol. 19, G. Goos and J. Hartmanis, Ed.
New York: Springer-Verlag, pp. 17-31, presented at Program.
Symp. Proc., Colloque sur la Programmation, Paris, France, April
9-11,1974.

[21 M. Hamilton, "Design of the GN&C flight software specifica-
tion," Charles Stark Draper Lab., Cambridge, MA, Doc. C-3899,
Feb. 1973.

[31 R. Millard, internal Charles Stark Draper Lab. study of APOLLO,
Cambridge, MA, 1969-1972.

[4] L. Fair et al., Planning Guide for Computer Program Develop-
ment, System Development Corp., Santa Monica, CA, Tech.
Memo. TM-2314/000/OOA, May, 1965, p. 57.

[51 B. W. Boehm, "Some information processing implications of air
force space missions: 1970-1980," Rand Corp., Santa Monica,
CA, Memo. RM-1213-PR, Jan. 1970.

[61 A. M. Turing, "On computable numbers with an application to
the entscheidungs problem," in Proc. London Math. Soc., ser. 2,
vol. 42, 1936.

[71 D. Parnas, "On a 'buzzword': Hierarchical structure," in 1971
Fall Joint Comput. Conf, IFIPS Conf Proc., vol. 39. Montvale,
NJ: AFIPS Press, 1971.

[81 D. D. Chamberlin, "The single-assignment approach to parallel
processing," in AFIPS Proc. New York: Elsevier, 1974.

[91 W. A. Wulf et al., "Bliss: A language for systems programming,"
Commun. Ass. Comput. Mach., vol. 12, Dec. 1973.

[101 B. Randell, "Research on computing system reliability at the
University of Newcastle upon Tyne, 1972-197 3," Comput.
Lab., Univ. Newcastle upon Tyne, Newcastle upon Tyne, Scot-
land, Tech. Rep. Ser. 57, Jan. 1974.

[11i J. Miller et al., CS-4 Language Reference Manual, Intermetrics,
Inc., Cambridge, MA.

[121 J. Schwartz, On Programming, An Interim Report on the SETL
Project, Dept. Comput. Sci., Courant Inst. Math. Sci., New York
University, New York, "Installment 1: Generalities," 1973;
"Installment 2: The SETL Language and Examples of its Use,"
1973.

[13] 0. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Pro-
gramming, C. A. R. Hoare, Gen. Ed. New York: Academic,
1972.

[141 M. Hamilton, "Management of APOLLO programming and its
application to the shuttle," Charles Stark Draper Lab., Cam-
bridge, MA, Software Shuttle Memo. 29, May 1971.

[151 M. Hamilton and S. Zeldin, "MERCURY statistical analysis,"
Charles Stark Draper Lab., Cambridge, MA, MERCURY Memo.
34, Nov. 1973.

[16] N. Brodeur, "MERCURY statistical analysis report revisited,"
Charles Stark Draper Lab., Cambridge, MA, MERCURY Memo.
34, Nov. 1973.

31

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1976

[17] M. Hamilton, "First draft of a report on the analysis of APOLLO
system problems during flight," Charles Stark Draper Lab., Cam-
bridge, MA, Shuttle Management Note 14, Oct. 1972.

[18] -, "The AGC executive and its influence on software manage-
ment," Charles Stark Draper Lab., Cambridge, MA, Shuttle
Management Note 2, Feb. 1972.

[19] H. Laning, AGC Program Sundisk, Charles Stark Draper Lab.,
Cambridge, MA, Executive Rev. 267, NASA 2021108-011, Nov.
1967.

[20] M. Hamilton, AGC Program Sundisk, Charles Stark Draper Lab.,
Cambridge, MA, Display Interface Rev. 267, NASA 2021108-
011, Nov. 1967.

[21] D. Lickly, AGC Program Sundisk, Charles Stark Draper Lab.,
Cambridge, MA, Restarts Rev. 267, NASA 2021108-011, Nov.
1967.

[22] C. Muntz, "Users guide to the block II AGC/LGC interpreter,"
Draper/M.I.T. Doc. R-489, Apr. 1965.

[231 D. L. Parnas, "On the criteria to be used in decomposing systems
into modules," Commun. Ass. Comput. Mach., vol. 15, Dec.
1972, pp. 1053-1058.

[24] -, "A technique for software module specification with ex-
amples," Commun. Ass. Comput. Mach., vol. 15, May 1972, pp.
330-336.

[25] M. Hamilton and S. Zeldin, "Higher order software require-
ments," Charles Stark Draper Lab., Cambridge, MA, Doc. E-2793,
Aug. 1973.

[26] -, "Top-down/bottom-up, structured programming and pro-
gram structuring," Charles Stark Draper Lab., Cambridge, MA,
Rev. 1, Doc. E-2728, Dec. 1972.

[27] W. Daly, "Automatic flowcharts," Charles Stark Draper Lab.,
Cambridge, MA, MERCURY Memo. 53, Mar. 1974.

[281 IBM, "Chief programmer teams principles and procedures,"
IBM Fed. Syst. Div., Gaithersburg, MD, Rep. FSC-71-5108,
June 1971.

[29] G. M. Weinberg, Psychology of Computer Programming. New
York: Van Nostrand Reinhold, 1971.

[30] J. R. White and L. Presser, "A tool for enforcing system struc-
ture," in Proc. Ass. Comput. Mach., 1973.

[31] M. Hamilton, "A discussion of higher order software concepts as
they apply to functional requirements and specifications," Charles
Stark Draper Lab., Cambridge, MA, Doc. P-019, Dec. 1973.

[32] B. McCoy, "DAIS avionic software development techniques," pre-
sented at the Amer. Inst. Aeronaut. and Astronaut. Digital
Avionics Syst. Conf., Boston, MA, Apr. 2-4, 1975.

[33] G. Boetje, "Managing software development: A new approach,"
presented at the IEEE Nat. Aerospace Electron. Conf. (NAECON),
Dayton, OH, June 10-12, 1975; Charles Stark Draper Lab.,
Cambridge, MA, Doc. P-165.

[34] D. DeVorkin, "The DAIS executive system," to be published.
[35] The Charles Stark Draper Lab., Inc., "Submittal of structured

flowcharts of the approach and landing test (ALT) GN&C design
for the space shuttle orbiter GN&C integration task," Charles
Stark Draper Lab., Cambridge, MA, Jan. 1975.

[36] Rockwell Int. Corp., "Space shuttle orbiter approach and land-
ing test, level C, functional subsystem software requirements
document guidance, navigation and control, part A, guidance,"
append. A, Nov. 1974; also as above, "Part B, flight control,"
Downey, CA.

[37] Honeywell, Inc., "Horizontal flight digital autopilot requirement
definition," Honeywell, Sarasota, FL, ED 21532, PRD UA17,
July 1974, vol. II, sect, 5-7.

[38] IBM, "Space shuttle orbiter avionics software," vol. III, "Appli-
cations software, part 1-GN&C," "Approach and landing test

(ALT) functional design specification," 75-SS-0473, Fed. Syst.
Division, Houston, TX, Feb. 1975.

[391 D. J. Lickly et al., HAL/S Language Specification, Intermetrics,
Inc., Cambridge, MA.

[40] G. Goddard, "Control map development," Charles Stark Draper
Lab., Cambridge, MA, Software Control System Analyzer Memo.
4, Jan. 1975.

Margaret Hamilton received the A.B. degree in
mathematics from Earlham College, Richmond,
IN, in 1958.
Since 1965 she has been with The Charles

Stark Draper Laboratory, Cambridge, MA,
where she is currently Division Leader of the
Computer Science Division. She heads a group
of software engineers, the members of which
are engaged in both research and application in
the areas of systems flight software for: Space
Shuttle, C4, DAIS and F8. In addition, her

group has been involved in software design and implementation for
automatic aircraft control, production control systems, computer
graphics, biomedical research, transportation, consumer durables, data
management, helicopter navigation and control, and instrumentation
redundancy studies. She is presently engaged in designing software
techniques covering subjects of software reliability and management.
As head of a 100 plus member programming group, she was responsible
for the design, development, verification, and documentation of all
command and lunar module on-board software for the Apollo and Sky-
lab programs. She has personally contributed to such software ac-
tivities as command module flight software design and programming,
quality assurance, test engineering, systems analysis, real-time software
systems integration, multiprogramming, task management, error detec-
tion and recovery, and man/machine interface design.

Saydean Zeldin received the A.B. degree in
physics from Temple University, Philadelphia,
PA, in 196 1.
Since 1966 she has been with the Charles

Stark Draper Laboratory, Cambridge, MA,
where she is currently Section Chief of the
Computer Science Division. She leads a group
of software engineers presently engaged in the
design of software techniques which include
such areas as software reliability, management,
design techniques, verification methods, and

real-time multiprogrammed systems. Her interest in the reliability of
large-scale software systems stems from her experience in the design,
development, and verification of the Apollo on-board software. These
software activities included: command and lunar module flight software
design and programming, test engineering, systems analysis, and real-
time software systems integration. As a Principal Engineer at The
Charles Stark Draper Laboratory she personally contributed to Apollo
programs involving orbital maneuvers, atmospheric entry, and mission
sequences that interfaced with the astronaut and various hardware
systems.

32

