
HIGHER ORDER SOFTWARE TECHNIQUES 

APPLIED TO A sPACE SHUTTLE PROTOTYPE PROGRAM 

Margaret Hamilton and Saydean Zeldin 

The Charles Stark Draper Laboratory 

Cambridge, Massachusetts - U.S.A. 

INTRODUCTION 

It is inconceivable that mathematicians would solve or communicate mathematical 
problems without the formalization of mathematics or the language of mathema- 
tics. Yet, software has been developed without its own consistent, set of formal 
laws or a software rneta-language of its own. (The meta-language is not to be 
confused with currently existing higher order languages (HOL) used by program- 
mers to code computer problems. ) We define here a formal system so that with- 
in the framework of its axioms we can develop reliable software and yet not 
sacrifice flexibility needed to define and perform complex multi-programmed 
software. 

We define Higher Order Software (HOS) as software expressed with recta-software 
and conforming to a formalized basic set of laws. HOS begins with problem for- 
mulation and ends with verified code. Performance formulation, logical formula- 
tion, verification, documentation, implementation, and management are all in- 
tegral parts of HOS. HOS allows for a multi-programmed software system that 
I) can automatically be changed during development or in real-time; 2) can 
interface with operational systems so that operational systems are an extension 
of the software; 3) provides error detection and recovery methods which protect 
both the software system and the operational system (man) from exceeding the 
limits of the environment within which they must operate; 4) can provide for the 
structuring of multi-programmed modules in real-time; and, 5) can be exhaus- 
tively tested for interface correctness without dynamic verification. 

The concepts defined here combine proven APOLLO techniques l, structured pro- 
gramming techniques 2, 3 and concepts obtained by theoretical considerations pre- 
sented here. These concepts are now being developed and verified with an on-board 
prototype Space Shuttle Flight program. This program is a large-scale, real- 
time, multi-programmed, man-machine interface software system. 

The ultimate aim is to be able to define any system with a software meta-language 
and a basic set of laws so that all the interfaces can be exhaustively tested, Fur- 
ther, change to a component in the system is not to affect non-related components° 
A parallel aim is to define an automatic system analyzer which will determine 
all inconsistencies in a given software definition° 

RATIONALE FOR A FORMAL CONTROL SYSTEM 

Multi-programmed software which interfaces in real-time with human 
and hardware systems has been most difficult to prove correct. The solution 
to this problem is not a trivial matter. The APOLLO on-board software had to 
contend with a system which had all of these characteristics. The executive 
system was asynchronous, but allowed for synchronous events or processes. It 
provided the astronaut with an asynchronous multi-level, multi-stacked, man- 
machine interface system. It further provided for sophisticated error detection 
and recovery for both hardware and software problems. These capabilities were 
crucial to the success of APOLLO software during both development and during 
flight. One mission proved this fact to the world in a dramatic way 4. 



18 

In the process of developing APOLLO and Skylab on-board software, reliable 
techniques for building large software systems were established. No known 
errors in the on-board soflware system occurred during all of the APOLLO and 
Skylab space flights5. The cost, however, of approaching this reliability was 
excessive. Analysis of software problems encountered during development sug- 
gested new and more formalized techniques to complement those proven and 
already established. 

Further, during the development of the protot~pe Shuttle program, it became 
clear that specific rules governing the validity of functions and modules were 
necessary. Although specific tasks were assigned to separate groups of people, 
it was difficult to completely separate all dependencies between algorithms. For 
example, the navigation group determined that a history of mission phase was 
inherent to the navigation task of estimating the on-board vehicle state. It also 
became clear that if we were to attempt to prove the entire system to be correct, 
the use (control) of a module must be completely separated from the module itself. 

F o r  e x a m p l e ,  e a c h  t a s k  g r o u p  a s s u m e d  t h e r e  w a s  a n e c e s s i t y  to i n t e r r o g a t e  
s y s t e m  s w i t c h e s  a t  t h e i r  t a s k  l e v e l .  T h i s  r e s u l t e d  in  the  d e v e l o p m e n t  of  u n i f i e d  
m o d u l e s .  E v e n  t h o u g h  w i t h i n  e a c h  i n d i v i d u a l  t a s k  t h e r e  w a s  a s t r u c t u r e d  s e q u e n c e  
of  o p e r a t i o n s ,  e a c h  u n i f i e d  m o d u l e  c a u s e d  a p r o l i f e r a t i o n  of  t e s t  c a s e s  s y s t e m  
w i d e .  L e t  u s  s h o w  a u n i f i e d  s y s t e m  ( F i g u r e  1). M i s s i o n  p h a s e ,  M1, i n v o k e s  n a v -  
i g a t i o n ,  N,  w i t h  i n s t r u c t i o n s  to  i n v o k e  N1 a n d  N2. M i s s i o n  p h a s e ,  M 2, i n v o k e s  N 
w i t h  i n s t r u c t i o n s  to i n v o k e  N3 a n d  N2 • N o t  o n l y  w o u l d  e a c h  c h a n g e  to N i m p l y  r e -  
t e s t i n g  o f  t he  M i i n t e r f a c e ,  b u t  w o u l d  a l s o  i m p l y  r e - t e s t i n g  the  M2 i n t e r f a c e .  
L i k e w i s e ,  a c h a n g e  to Mz o r  M~ c o u l d  r e q u i r e  a r e f o r m u l a t i o n  of  N. H e r e ,  o n e  
u s e r  w o u l d  no t  r e q u i r e  a l l  s u b - m o d u l e s  of  N, y e t  N i s  u n i f i e d  b e c a u s e  e a c h  u s e r  
r e q u i r e s  a p a r t i c u l a r  c o m b i n a t i o n  of  t h e s e  s u b - m o d u l e s .  L e t  u s  r e p l a c e  t h e  u n i -  
f i e d  c o n c e p t  w i t h  a n  e x a m p l e  of  HOS c o n t r o l  ( F i g u r e  2) .  H e r e ,  M1 i n v o k e s  NA 
w i t h  no  i n s t r u c t i o n s  a s  to t h e  m a n n e r  in  w h i c h  NA s h o u l d  i n v o k e  i t s  f u n c t i o n s .  
L i k e w i s e ,  M2 i n v o k e s  N,z c o n s i s t i n g  on ly  of s u b - m o d u l e s  N2 a n d  N~. (Of c o u r s e ,  
N~ c a n  b e  a c o m m o n  c o m p u t e r  f u n c t i o n  s o  t h a t  t h e  f o r m u l a t i o n  of  t he  f u n c t i o n  a p -  
p e a r s  o n l y  o n c e  w i t h i n  t h e  c o m p u t e r .  ) A u n i f i e d  m o d u l e  c a n  o c c u r  in a n o n - m u l t i -  
p r o g r a m m e d  e n v i r o n m e n t .  H o w e v e r ,  i n  a m u l t i - p r o g r a m m e d  e n v i r o n m e n t ,  t he  
i n t e r f a c e s  of  a u n i f i e d  m o d u l e  w o u l d  b e  f a r  m o r e  c o m p l e x .  

Figure 1: A Unified Example Figure 2: An Example Of HOS Control 

T h e  m u l t i - p r o g r a m m e d  p r o t o t y p e  p r o g r a m  r e q u i r e s  t h a t  a m a j o r  t a s k  b e  u s e d  any  
n u m b e r  of  w a y s  d e p e n d i n g  on  t h e  e n v i r o n m e n t  of  t h e  m i s s i o n  p h a s e .  F o r  e x a m p l e ,  
t he  r a t e  of  c o n v e r g e n c e  of  a c y c l i c  g u i d a n c e  s c h e m e  i s  d e p e n d e n t  on  t he  s t a b i l i t y  
c h a r a c t e r i s t i c s  of  t h e  v e h i c l e .  T h u s ,  t he  f r e q u e n c y  of  i n v o c a t i o n  of  g u i d a n c e  
i s  h i g h e r  d u r i n g  a t m o s p h e r i c  a s c e n t  t h a n  d u r i n g  o r b i t a l  c o n f i g u r a t i o n s .  In 
o r d e r  f o r  t h e  g u i d a n c e  s c h e m e  to c o n t r o l  i t s  own  f r e q u e n c y ,  i t  m u s t  n o t  o n l y  b e -  
c o m e  a c q u a i n t e d w i t h  o t h e r  s y s t e m  f u n c t i o n s ,  b u t  m a y  t h e n  f i nd  i t  n e c e s s a r y  to  c o n -  
t r o l  t a s k s  n e e d e d  f o r  f u n c t i o n s  w h i c h  do n o t  i n t e r a c t  w i t h  g u i d a n c e  a t  a l l .  



]9 

T h e  c o n c e p t  t h a t  u p p e r  l e v e l  m o d u l e s  c o n t r o l  l o w e r  l e v e l  m o d u l e s  h a s  b e e n  m o s t  
i m p o r t a n t  to the  d e v e l o p m e n t  of r u l e s  g o v e r n i n g  m o d u l a r i t y .  S i m p l i f i c a t i o n  r e s u l t -  
ing f r o m  e n f o r c e m e n t  of t h e s e  r u l e s  h a s  m a d e  i t  p o s s i b l e  to c o m p l e t e l y  s e p a r a t e  
s y s t e m  d e s i g n  f r o m  a p p l i c a t i o n  a l g o r i t h m s .  T h i s  i s  m o s t  i m p o r t a n t  in  the  c a s e  of 
the  a c t u a l  Shu t t l e  p r o g r a m ,  s i n c e  the  l i fe  e x p e c t a n c y  of the  p r o g r a m  is  at  l e a s t  
t w e l v e  y e a r s .  M i s s i o n  d e p e n d e n t  s e q u e n c e s  m u s t  be  o b t a i n e d  wi thou t  m o d i f i c a t i o n  
to a p p l i c a t i o n  m o d u l e s .  A p p l i c a t i o n  m o d u l e s  m u s t  be ab le  to be  " c o l l e c t e d "  f r o m  a 
l i b r a r y  wi thou t  r e t e s t i n g  the  m i s s i o n  m o d u l e  o r  the  c o m p u t e r  c o n f i g u r a t i o n .  

L e t  us  def ine  a s y s t e m  in wh ich  e v e r y  c o m p o n e n t  h a s  a un ique  de f in i t i on  as  to bo th  
how i t  c o n t r o l s  and  how i t  i s  c o n t r o l l e d .  We can  avo id  a c o m m o n  p r o g r a m m e r ' s  
p r o b l e m :  def ine  a c o n t r o l l e r  fo r  a f unc t i on  wh ich  c o n t r o l s  i t s e l f .  T h i s  is  a 
s p e c i a l  c a s e  of R u s s e l l ' s  w e l l - k n o w n  p a r a d o x :  Suppose  S to be the  s e t  o r  c l a s s  of 
s e t s  wh ich  a r e  no t  e l e m e n t s  of t h e m s e l v e s ;  if S ¢ S t h e n  S E S. 

]By s e p a r a t i n g  the  c o n t r o l  of a f unc t i on  f r o m  the  func t i on  i t s e l f ,  we can  c r e a t e  
f u n c t i o n s  f r e e  of h i d d e n  a s s u m p t i o n s ,  d i r e c t l y  app ly  m a t h e m a t i c a l  r e a s o n i n g  to the  
func t ion  i t s e l f ,  and  d e s c r i b e  and d i s c u s s  the  f o r m a l  c o n t r o l  s y s t e m  as  a s e p a r a t e  
process. 

The formulation of the control system is developed by a basic set of six axioms. 
Each axiom assumes a basic modeof control. 

FORMULATION 

Let us describe a control system in which all logical possibilities of control can 
be represented as a tree structure. Each node (any point at which two or more 
branches intersect) of the tree represents a unique point of execution of a function. 
Each node and all its dependents represent the unique tree struclure,T. 

A function, 
put set, P. 
output set. 

f: Q -- P or P = F(Q), is amapping from the input set, Q, to the out- 
Each element of the input set is expressed as a unique element of the 

We define an A dimensional input space by the values of the A variables (x I, x2...xA). 
And we define a B dimensional output space by the values of the B variables, 
(yly2...yB). An element of the input set, q ~ Q, is a particular point for (Xl, X~...xa) . 
An element of the output set, p ~ P, is a particular point for (Yl, Y2"" Ys )" 

In order to execute a function we must define a controller, the module. The 
module exists at the node just immediately higher on the tree relative to the func- 
tions it controls. 

A module has the responsibility to perform a function. For that purpose, the 
module controls functions only on the immediate lower level. This is done by in- 
vocation (CALL* or SCHEDULE ), by assignment of access rights to the input 
and output sets, and by the determination of the ordering of the functions on that 
level. Since every function receives input from and produces outputs for its 

A CALL can be explicit or implicit, e.g., y = z 2 + 3 is an implicit CALL. 



20 

controller, the module and function are relative definitions. Thus, the upper 
level is a module with respect to its immediate lower level functions. The lowest 
level of any tree contains only functions. The highest level node of the entire tree 
structure is only a module. 

The following symbols are used in the discussion below: 

F, for every o, controls 

A, logical 'and' ~, not controls 

V, logical 'or' ~, interrupt 

c, element of ~, not interrupt 

c, subset of a !, there exists a unique 

U, union of { }, set of a~b, logical 'if a then b' 

The formal control system (Figure 3) is one in which each module, S, Definition: 
has a unique identification 

Sn.m" _ [Pn.m. = Fn.i-n. (Qn.m.)] 
i i I I I I i I 

aim i defines a particular level of control in which i is the nested level of the 
module . i = i implies the level directly below the top level, ni is the node pos- 
ition (from the left} relative to its most immediate higher node. At each level 
there are assumed Ni node positions, i.e. , niE Ni. mi is the recursive relation- 
ship m i = n i _  t m i _  ~ d e f i n e d  f o r  i > 2 .  I f  i = 2 ,  m i  = ni -1  • I f  i = 1 ,  n i m i  = n i .  

Axiom i: The module, Sn.m. controls the invocation of the set of valid functions 
• I i • 

on 1~medlate, and only ~ts immediate, lower level, IFnmnimi}, That is, 

¥ j V ni+l 6 Ni+ 1 H! Snimi, [(Snmi i o Fni+lnimi) A((n.m.~n._.n .m.}-~Sj  j 1-1 1 1 nirn i ¢  Fnjrnj) ] (1) 

Thus, the module, Snimi , cannot control the invocation of functions on its own 
level. 

It also follows that the module, Snim i , cannot control the invocation of its own 
function. 

In addition, the 'no GOTO' concept of structured programming is therefore con- 
sistent with the control system 2. For example, 

If 'C GOTO D' exists, C loses control, e.g. , C can 

control itself to terminate. In addition, if 'D GOTO C' 

exists, D is controlling C and, in effect, is controlling 

itself. 

Theorem I. I: A function, C, cannot invoke another function, D,~hich broke function 
C for then ¢ would be controlling itself. 

C ~(D oC) 



J 

J
 

J
 

J 
J 

P~
FI

(Q
 I) 

PI
~ ~

'I I(Q
11

 } 
P2

T F
21

(Q
21

) 
P3

~ F
31

(Q
31

) 

P
 F

(Q
) 

P~
F2

(Q
 z)
 

P~
F3

IQ
 3)
 

P~
F4

(Q
 4)
 

PI
~F

I2(
Q

I2 )
 

P2
~F

22
(Q

22
 ) 

P3
~F

32
(Q

32
 ) 

./
..

. 
..\

_.
-._

 

j 
..

..
./

 
P

 
F 

32
"E

 32
2 

32
2 

P
 

=
F

 
Q

 
ni

,m
 i 

hi
m

 i 
hi

m
 i 

P
o 

Fi
gu

re
 3

: 
Th

e 
Fo

rm
al

 C
on

tro
l 

Sy
st

em
: 

Sn
im

i 
- 

[P
ni

m
i 

= 
Fn

im
i 

(Q
ni

m
i)]

 



22 

Corollary l.l.l: A logical antecedent cannot be assigned by its consequent if a repet- 
t i t i{ze relationship controls the execution of the antecedent. 

e. g., If function C is comprised of 'if G then D' 

G cannot be assigned by D under the condition 

stated above. 

Theorem i. 2: If a function from leveli+ I is removed and the controller module at 
leveli still maintains its same mapping, the function at leveli+ I , Fn~ + ~ r~ , is 

. . . .  i l i  i 
extraneous. The extraneous function is a dlrect vlolatlon of axiom ii , for if the 
function is not removed, Snim~ ~ Fni+inimi . 

NOTE: Violation of theorem I. 2, in common practice, manifests itself in modules 
with many user options. With respect t o  the entire system, the use of extraneous 
functions proliferates test cases and complicates interfaces (c. f. Figure I). 

Corollary I. 2. i; Consequents of a decision do not interrogate the antecedent for 
this would result in an extraneous function. 

e.g., 'ifG then D' where D implies 'ifG then E' 

must be reduced to 'if G then E'. 

Theorem I. 3: Assignment to a variable is restricted to one process when more 
than one process is concurrent. This is true because modules may only invoke 
valid functions, and a valid function has only one output value for a particular in- 
put value. 

Axiom 2: The module, Shim i , is responsible for elements of the output space,of only 
Pniml , such that the mapping Fniml (Qnimi) is Pnimi . That is, 

¥ j ~ nim i S[Snimi , [ (Sniml o Pnirai) h ( (njmj#nimi)-~Snimi @ Pnjmj) ] (2) 

Thus, there must not exist any member of the input space for which no member of 
the output space is assigned. For, if this were not the case, we would have an in- 
valid function. 

Theorem 2.1: There may be more than one formulation for a particular function. 
It is only necessary that the mapping be identical. Equivalent computer functions 
may require a different formulation due to timing restrictions, etc. 

Axiom 3: The module, Sn.m. , controls the access rights to each set of variables, 
{Yn nm } , whose values ~d~fine the elements of the output space for each immed- . i+l i i 
late, and only each immediate, lower level function. 

¥ J ¥ ni+l E Ni+l ~[ Snimi" [ (Snmi  i ° "~ni+Inimi) A ( ( n ' m ' ~ n ' + ' n ' r n ' ) " ' S 3  j i I I i him i ¢  Ynjm] ) ] (3)  

NOTE: If any two modules, Sn.m. and Sn~,=~ , require the same function formula- 
tion, the same set of computel ~ ~esiding ih~tructions can be used for the 
functions as long as the access rights of the variables are controlled via axiom 3. 



23 

Theorem 3. i: The variables whose values define the elements of the output space 
at level~ are a subset of the variables whose values define the elements of the out- 
put space at leveli+ i , that is, 

Y n i  ' m i  C { Y n i + l n i m i  } 

A x i o m  4: T h e  m o d u l e ,  Sn . . . .  c o n t r o l s  the  a c c e s s  r i g h t s  to e a c h  s e t  of v a r i a b l e s ,  
{X,i+~imi } , w h o s e  v a l u e s  ~ f i n e  t-he e l e m e n t s  of the  inpu t  s p a c e  f o r  e a c h  i m m e d -  
i a t e ,  and  on ly  each  i m m e d i a t e ,  l o w e r  l e v e l  f unc t i on .  

V j • ni+ 1 e Ni+ 1 a! Snimi, [ (Snimi o Xni+lnimi } h ( (n.m.] 1 ~m-'n'm')i+i i i "~Snimi¢ Xnjmj} ] (4 )  

Thus, the module, Sn.m. , cannot alter the members of its own input set, i.e., 
the access to the eler~e~nts of the input set of Shim i cannot be controlled by Shim ~. 

Theorem 3, 4. I: The output set of a function cannot be the input set of that same 
function. If y = f(y,x) could exist, access to y would not be controlled by the next 
immediate higher level. 

NOTE: Adherence to theorem 3, 4. i simplifies error recovery techniques associa- 
ted with parameter passing and functionally dependent iterative processes. 

Theorem 3~ 4.2: The output set of one function can be the input set of another 
function only if said functions exist on the same level and are controlled by the 
same immediate higher node. If y = fi (x) and g = f2 (Y}, both functions exist at the 
same level. If g = f2 (Y} is at a lower level, access rights to the input set y imply 
y is determined before y exists. Y = fi {x) at a lower level implies an alteration 
to the input set of g = f2(Y). 

T h e 0 r e m ,  3, 4~ 3: E a c h  m e m b e r  of the  s e t  of v a r i a b l e s  w h o s e  v a l u e s  de f ine  the  
e l e m e n t s  of the  ou tpu t  s p a c e  of  a func t ion  i s  e i t h e r  a v a r i a b l e  of the  ou tpu t  s p a c e  
of the  c o n t r o l l e r  o r  i s  a v a r i a b l e  of the  i npu t  s p a c e  f o r  any  of the f u n c t i o n s  on the 
s a m e  l e v e l  e x c l u d i n g  the  v a r i a b l e s  of  i t s  own func t i on .  

V Yn.m.i i ~ Yn.m. ' i  1 Yn.m.i i ~ " ' { Y m ' U { { X n i m i } - X n i m i  } } i  

NOTE: Violation of theorem 3, 4.3 in common practice, manifests itself in 
modules that calculate by-product results for anticipated users: e.g., a Shuttle 
module that calculates the position vector of a vehicle might also calculate 
altitude, apogee, and perigee, instead of creating separate modules to perform 
the separate functions. 

Theorem 3, 4.4: Each member of the set of variables whose values define the 
elements of the input space of a function is either a variable of the input space 
of the controller or is a variable of the output space for any of the functions on 
the same level excluding those variables of its own function. 

VXn'm'~i i Xn'm'" Xn'm" ~ i  i 1 i {XmiU {{Ynimt}-Ynimi}}" " 



24 

Axiom 5: The module, Sn.m. , can reject invalid elements of its own, and only 
its own, input set, Qnlm i , that Is, 

~q j V nirn i ~]Snirai, [ (SnimiO Qnimi) A ((njmj~nim i) ~Snirn i~ Qn.rn. ) ] (5) 
J ] 

Axiom 6: The module S .... controls the ordering of each tree,{Tni+inimi } , for 
the immedlate, and only on the im~edlate, lower level. 

j ¥ ni+ I • Ni+ 1 5! Snimi, [(Snirn i o Tni+lnimi ) A ((njmjC-ni+lnimi)~Sn,rni '~ ¢ Tnjmj ) ] (6) 

Thus, the module, S~m. , controls the ordering of the functions, the input set, 
and the output set forle~ch node of {Tni+,nimi}. 

NOTE: The ordering of a set of functions determines the invocation so that a 
sequence of the said functions is established, 

A process, @, is a function scheduled to occur in real-time. 

If two processes are scheduled to execute concurrently, the priority of a process, 
determines precedence at the time of execution, 

If one process has a higher priority than another process, the higherpriority pro- 
cess can interrupt the lower priority process, The lower priority process is re- 
sumed when the higher priority process is either terminated or in its wait state° 

Theorem 6o I: The priority of a process is higher than the priority of any pro- 
cess on its most immediate lower level. 

Theorem 6.2: If two processes have the same controller such that the first has 
a lower priority than the second, then all processes in the control tree of the 
first are of lower priority than the processes in the control tree of the second. 

Theorem 6, 3- The ordering between members of any given process tree cannot 
be altered by an interrupt. For, if process A is of higher priority than process 
B, process A interrupts all of B, i.e., the priorities of the dependent processes 
of ]3 are less than the priority of Bo 

Theorem 6.4: A module, Sn.m. , controls the priority relationships of those pro- 
cesses on the immediate, and~only the immediate, lower level. 

¥ j ¥ k ¥ ~i+l,w~+iENi+l ~! Snimi, ~ni+l~wi+1~(Snimio (@ni+lnirni ~ ewi+inimi)A((n-rn,~n-+~n'rn->-~(S3 3 ~ ± ~ ~ nirn i~(@njrnj~ @nkrnkl) ] 

Corollary 6.4. I: An explicit priority relationship exists among each pair of pro- 
cesses at the same level which branch from the same most immediate higher 
level node. 

NOTE: If the priority of process, @~m. , is greater than the priority of, @b m • and 
the priority of ebirn ~ , is less than t}{e~priority of @cllm i , the controller at ~o~le m i 
does not control the priority relationships of @aim ~ and eo.~. To avoid a violation 
of theorem 6.4, the priority relationship of ealro ~ and @%m~i rnust also be stated 
explicitly. 



25 

e , can interrupt another process ~'w m , Corollary 6.4.2: If a process, %m~ the 
control tree of ~nim i can interrupt @w~m i and each member of the eontriol I tree of 
e ,,,i~ i 

C o r o l l a r y  6 . 4 . 3 :  Since Sn,m. con t ro l s  the p r i o r i t y  r e l a t i onsh ips  of the set of p r o -  
cesses {en + ...... } ther~ i½ i t s e l f  cannot i n t e r r u p t  any m e m b e r  of the p rocesses  
of the con t~ ) l  ~ t'~ee{T~'i+,~ ~ ,} 

C o r o l l a r 7  6 . 4 . 4 :  A p rocess  cannot i n t e r r u p t  i t se l f .  

Lernma 6, 4.4. i: The multi-program statement WAIT is an implicit decision of 
a process to interrupt itself at a future time and therefore is not consistent with 
the control system. 

Corol]ary 6.4.5: A process cannot interrupt its controller. 

Corollary 6.4.6: A process, ~nim i , that can interrupt another process, 
@nj~j , affects the absolute time loss for e ~ j .  

Theorem 6.5: If the antecedent of a decision within a module is a time relation- 
ship, the relationship is extraneous. For, only if the relationship is removed, 
could the ordering be controlled by the next hi~her level. 

e.g., '(time = t I) --A 'can be replaced by A where the 

controller schedules A at time t I. 

Theorem 6.6: If a function is invoked by a CALL or SCHEDULE, the correspond- 
hag module of said function can invoke another function by a CALL. 

Theorem 6, 7: A SCHEDULE of two processes may be commutative, but a CALL 
of two functions is not commutative. 

Theorem 6.8: If a function, Fnm , is invoked by a CALL, the module corre- 
sponding to the function, Shim i ~, hannot invoke a process. If the module schedules 
a process and the set of operations of the function, Fn.rn. , is performed before 
the process is executed, the module does not control 'tn'e scheduled process, 

Theorem 6, 9: A SCHEDULE must always cause the processes invoked to be de- 
pendent so that the higher level maintains control at all times. 

Theorem 6, i0: The maximum time for a cycle of a process to be completed or 
delayed can be determined. Consider a particular level which has N processes. 
The n th process has a frequency, fn cycles per second, such that the period, t n, 
for the nth process is I/fn, and the total maximum execution time for thai pro- 
cess is z~tn° The jth process has a maximum number of cycles tnf j during time 
t n. Then tnf) Atj is the maximum time a process could consume during in. 

From corollary 6.4. I, there exists priority relationships for N processes such 
that 

> > > @N.m. m . . . . .  m .... 
rfli 1 i 1 1 1 



26 

Therefore, process n can be completed within time %if its maximum comple- 
tion time, t c, is less tilan t~where 

J 

tc = j~l tnfjAtj '+ Atn 

and J equals the total number of processes of higher priority than process n 
on the control level of n. Also, the maximum delay time for process n is the 
maximum completion time for the process of the nearest higher priority on its 
own level. 

THEOREI~I: It is possible to control all functions of any given software problem 
such that one controller controls all functions. 

If we have only one level of control, every funqtion can be performed, all access 
rights can be allocated and the ordering between functions can be controlled. 

Thus, it is always possible to perform every required function of any software 
system by adhering to the six axioms of the control system. 

REAL-TIME CONTROL SYSTEIVl 

The design of any system which does not have the potential to assign the same 
variables concurrently is deterministic. In this type of system, functions can 
either be functionally independent, functionally dependent, or mutually dependent. 

An independent function is one in which the output set is not the input set of 
another function. A dependent function is one in which the output set is an input 
set of another function. Two functions are mutually dependent if the output set 
of the first is the input set of the second, and the output set of the second is the 
input set of the first. 

The design of any system which has the potential to assign the same variables 
concurrently is non-deterministic. 

A system is able to provide for mutually dependent functions to be executed con- 
currently if the HOS axioms are applied in real-time. With such a system, 
the operator need not memorize permutations of proper operational sequences. 
In addition, the software system is able to handle error detection and recovery 
for all operator-selected processes by simple algorithms; rather than by special 
algorithms for each operator selection or by complicated table look-up algorithm 

schemes. 

Consider a typical Shuttle example of a non-deterministic system where the 
modules M~ and M2 are mission phases. MI and i~ 2 , if executed in parallel, 
could both perform the same function of Guidance, Navigation and Control. In 
this case, a mechanism is needed to prevent the IVl I and IvI~ processes from con- 
flicting with each other. 



27 

Let us now consider a dynamic scheduling algorithm (or structuring executive). 
The scheduler: 1 ) controls the ordering of those modules which can vary in real- 
time dependent on operator selection; 2) assigns priorities to processes based on 
the relative priority relationships, according to axiom 6, for each control level; 
3) prevents a violation of the HOS axioms so that no two processes can conflict 
with each other; and, 4) determines when the total resources of the computer are 
approached. Such a dynamic scheduler would assume the following tools: pro- 
cess locks, data locks, and a scheduling algorithm which provides relative and 
variable priorities. The process lock for each process locks out lower priority 
processes other than those on its own tree from assigning data for as long as 
the process is active, (i. e., executing or in the wait state). Data locks within 
a process temporarily lock out allother processes from reading elements of a 
data block when that block is in being updated. The controller for a process 
is a real-time scheduler. The scheduler invokes a process, via the schedule 
statement, to automatically set a process lock, assign a priority, and set-up 
data locks for the process invoked. 

Each scheduled process is dynamically assigned a unique priority set which 
bounds unique priority sets of its dependent processes. The priority of a 
process is determined by its I) level of control; 2) order of selection by the 
operator; and, 3) predetermined priority relationships. The highest priority 
process is, by definition, the highest level controller. Each controller has a 
higher priority than the processes it controls. In order to compare the priorities 
of two processes, a process chain up the tree for each process is made until one 
level before the branches intersect. The priorities of the parent processes at 
that level determine the priority of the two processes in question, i.e., the pro- 
cess with the highest priority parent has the higher priority. Thus, we have a 
system where a process and all its dependent processes are either all higher or 
all lower than another non-dependent process, and all of its depend-e-n~s. Con- 
s-l-der Figure 3 to be a subset of the Shuttle system, S. 

SI,$2,$3, S 4 are the ascent mission phase, atmospheric entry 
mission phase, astronaut display, and abort 
mission phase respectively; 

Sll,$21,$31 are the ascent guidance (G A), ascent navigation 
(N A ), and ascent vehicle control (C A ) respectively; 

S12,$22,$32 are the entry guidance, G s, entry navigation, N E, 
and entry vehicle control, Cs, respectively; 

S121"$211 are navigation state extrapolation, and measure- 
ment incorporation respectively. 

Thus, for example, in Figure 3, the relative priorities of ascent guidance, Srl, 
and measurement incorporation, 822 , are determined by comparing the priorities 
of the parent mission phases, S I and S 2. 

Each module defines priority relationships for each function it controls. For 
example, S controlling {S} might have the priority relational information: 
( (~, ~s) < (~4 } )- S 3 is a function invoked by a CALL and therefore, has the 
same priority as the scheduler, S. The priorities S~ and S 2 are initially equal, 
but their priorities (and thus, priority sets} are decided by the ordering of 
schedule invocation. Yet $I and $2 are always of lower priority than $4 • A 



28 

typical Shuttle relationship is (CE>~E> N~: ), where the dependent relationships 
between Control, Guidance and Navigation are maintained on a fixed relative 
priority basis. In the latter example, CE can interrupt N~:. Csis functionally 
dependent on GE, i.e., CEUSeS the output set of G~.:as its own input set. In add- 
ition, a mission phase schedules Ns at a higher frequency than G E. At all times 
the priority relationships of C E, G s, and N}~ remain fixed. 

If S] is selected first, S 2 cannot interrupt S I as long as S 1 , or any of its dependent 
processes are being executed. When S I is in a wait state, S 2 can execute, but only 
if S I is not ready to execute. When S] is ready, process set S I interrupts process 
set $2. If the $2 set attempts to assign data process locked in the Sj set, $2 and 
its dependents are terminated by the scheduler. At this point the last display 
is regenerated by the scheduler of the terminated process, thus giving the 
astronaut complete visibility. If however, S], when it becomes active, attempts 
to assign data which is process locked by S 2, S2is terminated since Sihas a 
higher priority lock than Sz. If S~ attempts to read data process locked by S~, and 
that data is presently being assigned by the other set, the $2 process waits for the 
S:block of data to be updated. Likewise, S1must wait to read data presentlybeing 
assigned by S 2 . 

The operational levels of a system are, by definition, those levels where the 
operator has at least one option. Each level has the potential to be an operation- 
al level. Consider the Shuttle example. The operational level, S, allows the 
astronaut to select, reselect, proceed from. or terminate S I , S 2 , or S4via $3. 
Operator errors at each operational level are prevented via the process lock 
mechanism. Due to IIOS axioms, at a non-operational level (i. e., one where a 
conflicting process is not initiated by the operator) an error of this type would 
not occur. Without a static analyzer, however, the process lock mechanism of 
the scheduler would discover the error dynamically. Of course, the analyzer 
avoids an exxoensive way to find a software error. 

Alternatives for reselecting or terminating an existing process depend, to a 
large extent, on desired operational procedures. The scheduler could display a 
'select' or 'terminate' option for each operational process. Or, the operator 
could request the highest level scheduler which has the highest priority to ter- 
minate a specific process. If S I is selected when Sits in the queue, either the 
first S r, or the second, is terminated. 

Consider two processes, SI and S 2 , where S has a higher priority than Sz. 
Scheduler Sn schedules Sm. Sm could have a very low or a very high priority 
relative to but less than $I: but relative to $2, Sj and all its dependent pro- 
cesses have higher priorities. Thus, if Sm is controlled by a DO WHILE instead 
of a cyclic schedule, S z and its dependent processes are locked out for the dura- 
tion of the DO WHILE. However, if $I~ is scheduled cyclically, Sz can be pro- 
cessed when S~ and its dependents are in the wait state. In conventional priority 
schemes, this would not be the case, since $2 could be arbitrarily assigned a 
priority less than S~but greater than Sm. Thus, the use of a DO WHILE con- 
struct as a substitute for a cyclic process is discouraged. It is interesting to 
note that a DO WHILE within a non-multi-programmed function can never be 
terminated by an outside controller. Thus, in this case, one would be advised 
to use a DO FOR WHILE instead. 

Errors in traditional IVIP systems are either caused by data or timing conflicts. 



29 

The application of'HOS prevents both types of conflicts. The axioms imply that 
the non-local variable is expliciti~ controlled. The restrictions imposed are 
consistent with reports of others 6, 7 who have found that implicit control of non- 
local variables tend to produce programs that are difficult to understand. The 
methods for proving each computer function to be valid is less cumbersome, 
for there is no longer a possibility of side effects (inputs cannot be altered) or 
redefinitions (outputs are explicitly subsets of the results of invoked functions). 
Axiom 6 prevents relative timing conflicts between processes and guarantees 
time-critical events. (Those events or cyclical processes which are time- 
critical and therefore synchronous in nature, are scheduled as the highe'st 
priority process in the system. ) Finally, when memory or timing limits of the 
computer are reached, the dynamic scheduler resurrects the software system by 
terminating lower priority processes and leaving only the highest priority pro- 
cesses in the queue. With these concepts, it is immaterial whether breakpoints 
occur at every basic machine instruction, every HOL statement or via some 
other method. The key consideration is the absolute minimal time required to 
service highest priority processes and highest frequency interrupts. 

Conventional real-time software systems can have infinite interfaces, or a very 
large finite number of interfaces to verify. This verification has been tradition- 
ally performed by exercising the software system on a dynamic basis. Such a 
system cannot be exhaustively tested° Given the HOS control system, it is now 
possible to design a system with a small finite number of logical interfaces to 
verify. These interfaces can be exhaustively tested by analyzing a given software 
system on a static basis. Thus, the more expensive methods of simulation and/ 
or dynamic verification can be limited to unit performance testing. 

The analyzer verifies the system for correctness by checking for all violations 
of the axioms. Second, the analyzer provides performance interface testing for 
absolute timing consistency. It is only necessary to provide timing analysis be- 
tween functions on the same control level (c. f. theorem 6. I0). Third, in a 
system which is not deterministic, the analyzer would predetermine the potential 
data conflicts that could happen in real-time by distinguishing between operation- 
ally assigned relative priorities and fixed assigned relative priorities. (Of 
course, in real-time, the system scheduling algorithm would automatically pre- 
vent the conflicting processes from executing in parallel. ) 

Included as input for the analyzer, then, is the information needed for each in- 
vocation of control: component definitions, processes scheduled, cyclic timing, 
absolute time, and fixed and operational priority relationships. In addition, for 
the analyzer performance interface testing, predicted (and eventually actual) 
time for each function are provided as input. 

DEVELOPMENT OF THE SHUTTLE PROTOTYPE PROGRAM 

The development of the prototype software system is both determined and facili- 
tated by formalized definitions since they are the same for all the well-known dis- 
ciplines of design, implementation, verification, management and documentationS. 

The Shuttle prototype program is consistent with the HOS phases of development. 
The first phase defines a general problem. This includes those parts which are 
performed by and interface with a computer. The second phase defines the 



30 

algorithms for the functions performed by a computer. These first two phases 
are hardware and HOL independent. The third phase evolves the algorithms to 
include architectural aspects (hardware, HOL, etc). 

In a real-time system, an asynchronous executive, which handles interrupts with 
unique priorities, is able to maintain the natural state of the real-time functions 
and their relationships for all phases of software development. It is for this 
reason, the real-time prototype program is a multi-programmed system. 

Each completed module in the system is entered into an official library as soon as 
it is verified and approved by designated experts of the appropriate area of ex- 
pertise. The "assembly" control supervisor approves each module for inclusion 
into the official library. These official modules can be collected, top-down, to 
form a given defined system from each HOS component definition. (Conceivably, 
a subset of the development collector in a flight computer could rearrange com- 
ponents to provide for real-time changes to the software system. ) 

The HOL, HAL 9, has provided us with the basic constructs needed (i. e., 
IFTHENELSE, DOCASE, DOFORWHILE, CALL, and SCHEDULE*) to aid in 
coding HOS software. The structured flowcharts I0 (Figure 4) help the program- 
mer to arrange code in a linear sequence. The functional control map (Figure 3) 
helps the programmer to arrange functions according to control levels. 

L=I ...... 

Figure 4: Functional Structured Flowcharts 

(Flow is assumed to return in line at the comple~on of every object of each decision.) 

*HAL does not presently have the capability to provide priority relationships as 
discussed above. 



31 

The modules are presently verified by a statement level closed loop simulator 
with environment modules for the flight computer, vehicle, astronaut, universe, 
etc. It is our aim to minimize the necessity for dynamic simulation by use of 
the formalized HOS language, HOS axioms and the tools which include the collec- 
tor, the analyzer, and the structuring scheduler algorithm. 

CONCLUSION 

HOS concepts are now being applied to a prototype Shuttle flight software system. 
By providing software with its own meta-software and its own universal system, 
not only can we produce reliable systems, but we can also communicate these 
systems to others. Development and real-time flexibility are not sacrificed. 
The only limitations applied are those which prevent a potential error from 
occuring, i. e., the only flexibility missing is that which allows for flexibility 
of errors. 

ACKNOWLEDGEMENT 

The authors would like to express appreciation to Donald DeVorkin for his critical 
review of this paper, and to Adele Volta for editing assistance. 

This  p a p e r  was p r e p a r e d  under  C o n t r a c t  NAS9-4065 with the Lyndon ]3. Johnson  
Space C e n t e r  of the Nat iona l  A e r o n a u t i c s  and Space A d m i n i s t r a t i o n .  

The publication of this paper does not constitute approval by the National Aero- 
nautics and Space Administration of the findL~gs or the conclusions contained here- 
in. It is published only for the exchange and stimulation of ideas. 



32 

REFERENCES 

I. Hamilton, M., "Management of Apollo Programming and its Application to 
the Shuttle," CSDL Software Shuttle Memo No. 29, May 27, 1971. 

2. Dahl, O.J., Dijkstra, E.W., andHoare, C.A.R., StructuredProgrammin~ 
Academic Press, London and New York, 1972. 

3. Mills, Harlen, "Top-down Programming in Large Systems," Courant 
Computer Science Symposium, June 29 - July I, 1970. 

4. Hamilton, l~I.,"Computer Got Loaded," Datamation, March, 1971. 

5, Hamilton, M., "First Draft of a Report on the Analysis of Apollo System 
Problems During Flight," CSDL Shuttle Management Note No. 14, 
October 23, 1972. 

6. Wulf, W.A., and Shaw, M., "Global Variable Considered Harmful," Sigplan 
notices, February, 1973. 

7. I<nuth, D.E., "The Remaining Trouble Spots in Algol 60," CACM i0, 
October I0, 1967. 

8. Hamilton, M., Zeldin, S., "Higher Order Software Requirements," CSDL 
E-2793, August, 1973. 

9. Intermetrics, Inc., "HAL/S Language Specification, " January, 1974. 

i0. Hamilton, M., Zeldin, S., "Top-down, Bottom-up, Structured Programming 
and P r o g r a m  S t ruc tu r ing , "  Rev. 1, CSDL E-2728, December ,  1972. 


