HIGHER ORDER SOFTWARE TECHNIQUES

APPLIED 7O A SPACE SHUTTLE PROTOTYPE PROGRAM

Margaret Hamilton and Saydean Zeldin

The Charles Stark Draper Laboratory
Cambridge, Massachusetts - U.S.A.

INTRODUCTION

It is inconceivable that mathematicians would solve or communicate mathematical
problems without the formalization of mathematics or the language of mathema-
tics. Yet, software has been developed without its own consistent set of formal
laws or a software meta-language of its own. (The meta-language is not to be
confused with currently existing higher order languages (HOL:) used by program-
mers to code computer problems.) We define here a formal system so that with-
in the framework of its axioms we can develop reliable software and yet not
sacrifice flexibility needed to define and perform complex mulii-programmed
software.

We define Higher Order Software (HOS) as software expressed with meta-software
and conforming to a formalized basic set of laws. HOS begins with problem for-
mulation and ends with verified code. Performance formulation, logical formula~-
tion, verification, documentation, implementation, and management are all in-
tegral parts of HOS. HOS allows for a multi-programmed software system that
1) can automatically be changed during development or in real-time; 2) can
interface with operational systems so that operational systems are an extension
of the software; 3) provides error detection and recovery methods which protect
both the software system and the operational system (man) from exceeding the
limits of the environment within which they must operate; 4) can provide for the
structuring of multi-programmed modules in real-time; and, 5) can be exhaus-
tively tested for interface correctness without dynamic verification.

The concepts defined here combine proven APOLLO techniquesl, structured pro-
gramming techniques®, ¥ and concepts obtained by theoretical considerations pre-
sented here. These concepts are now being developed and verified with an on~board
prototype Space Shuttle Flight program. This program is a large-scale, real-
time, multi-programmed, man-machine interface software system.

The ultimate aim is to be able to define any system with a software meta-language
and a basic set of laws so that all the interfaces can be exhaustively tested. Fur-
ther, change to a component in the system is not to affect non-related components.
A parallel aim is to define an automatic system analyzer which will determine

all inconsistencies in a given software definition.

RATIONALE FOR A FORMAL CONTROL SYSTEM

Multi-programmed software which interfaces in real-time with human

and hardware systems has been most difficult to prove correct, The solution
to this problem is not a trivial matter. The APOLLO on-board software had to
contend with a system which had all of these characteristics. The executive
system was asynchronous, but allowed for synchronous events or processes. It
provided the astronaut with an asynchronous multi-level, multi-stacked, man-
machine interface system. It further provided for sophisticated error detection
and recovery for both hardware and software problems. . These capabilities were
crucial to the success of APOLLO software during both development and during
flight. One mission proved this fact to the world in a dramatic way#4.

In the process of developing APOLLO and Skylab on-board software, reliable
techniques for building large software systems were established. No known
errors in the on-board software system occurred during all of the APOLLO and
Skylab space flights5. The cost, however, of approaching this reliability was
excessive. Analysis of software problems encountered during development sug-
gested new and more formalized techniques to complement those proven and
already established.

Further, during the development of the prototype Shuttie program, it became
clear that specific rules governing the validity of functions and modules were
necessary. Although specific tasks were assigned to separate groups of people,
it was difficult to completely separate all dependencies between algorithms, For
example, the navigation group determined that a history of mission phase was
inherent to the navigation task of estimating the on-board vehicle state. It also
became clear that if we were to attempt o prove the entire system to be correct,
the use (control) of a module must be completely separated from the module itself.

For example, each task group assumed there was a necessity to interrogate
system switches at their tasklevel. This resulted in the development of unified
modules. Even though within each individual task there was a structured sequence
of operations, each unified module caused a proliferation of test cases system
wide. Let us show a unified system (Figure 1). Mission phase, M;, invokes nav-
igation, N, with instructions to invoke N, and Ny. Mission phase, M;, invokes N
with instructions to invoke N3 and Ny. Not only would each change to N imply re-
testing of the M, interface, but would also imply re~testing the Mzinterface,
Likewise, a change to Mj or M; could require a reformulation of N. Here, one
user would not require all sub-modules of N, yet N is unified because each user
requires a particular combination of these sub-modules. Let us replace the uni-
fied concept with an example of HOS control (Figure 2). Here, M; invokes Ny
with no instructions as to the manner in which N, should invoke its functions.
Likewise, M, invokes Ny consisting only of sub-modules Ny and N3. (Of course,
N, can be a common computer function so that the formulation of the function ap-
pears only once within the computer.) A unified module can occur in a non-multi-
programmed environment. However, in a multi-programmed environment, the
interfaces of a unified module would be far more complex.

() ()
O O & O ¢ (o ©
010 &0

Figure 1: A Unified Example Figure 2: An Exampie Of HOS Control

The multi-programmed prototype program requires that a major task be used any
number of ways depending on the environment of the mission phase. For example,
the rate of convergence of a cyclic guidance scheme is dependent on the stability
characteristics of the vehicle. Thus, the frequency of invocation of guidance

is higher during atmospheric ascent than during orbital configurations. 1In
order for the guidance scheme to control its own frequency, it must not only be~
come acquainted with other system functions, but may then find it necessary to con-
trol tasks needed for functions which do not interact with guidance at all.

19

The concept that upper level modules conirol lower level modules has been most
important to the development of rules governing modularity. Simplification result-
ing from enforcement of these rules has made it possible to completely separate
system design from application algorithms. This is most important in the case of
the actual Shuttle program, since the life expectancy of the program is at least
twelve years. Mission dependent sequences must be obtained without modification
to application modules. Application modules must be able to be "collected" from a
library without retesting the mission module or the computer configuration.

L.et us define a system in which every component has a unigue definition as to both
how it controls and how it is controlled. We can avoid a common programmer's
problem: define a controller for a function which controls itself. This is a
special case of Russell's well~-known paradox: Suppose S to be the set or class of
sets which are not elements of themselves; ifS € § then § € S,

By separating the control of a function from the function itself, we can create
functions free of hidden assumptions, directly apply mathematical reasoning to the
function itself, and describe and discuss the formal control system as a separate
process.

The formulation of the control system is developed by a basic set of six axioms,
Each axiormn assumes a basic modeof control.

FORMULATION

Liet us describe a control system in which all logical possibilities of control can
be represented as a tree structure. Each node (any point at which two or more
branches intersect) of the tree represents a unique point of execution of a function.
Each node and all its dependents represent the unique tree structure,T.

A function, f: Q — P or P = F(Q). is a mapping from the input set, Q, to the out-
put set, P. Each element of the input set is expressed as a unique element of the
output set.

We define an A dimensional input space by the values of the A variables(x;, x,...%,).
And we define a B dimensional ouiput space by the values of the B variables,

(1% ..-¥a). An element of the input set, g € Q, is a particular point for (x;, %,...x,).
An element of the output set, p € P, is a particular point for (y,, %... %)

In order to execute a function we must define a controller, the module. The
module exists at the node just immediately higher on the tree relafive to the func-
tions it contirols.

A module has the responsibility fo perform a function. For that purpose, the
module controls functions only on the immediate lower level. This is done by in-
vocation {CALL* or SCHEDULE }, by assignment of access rights to the input
and output sets, and by the determination of the ordering of the functions on that
level. Since every function receives input from and produces outputs for its

"A CALL can be explicit or implicit, e.g., y = 7% + 31is an implicit CALL.

20

controller, the module and function are relative definitions. Thus, the upper
level is a module with respect to its immediate lower level functions. The lowest
level of any tree contains only functions. The highest level node of the entire tree
structure is only a module.

The following symbols are used in the discussion below:

¥, for every o, controls

A, logical 'and' #. not controls

V., logical 'or! a, interrupt

g, element of és not interrupt

C, subset of d1, there exists a unique

U, union of a--b, logical 'if a then b!

{ }, set of

Definition: The formal control system (Figure 3) is one in which each module, S,
has a unique identification

S =[Py m. " Fom,
i

Q 1

n.m.
11

n;m; defines a particular level of control in which i is the nested level of the
module , i=1 implies the level directly below the top level. n; is the node pos-
ition (from the left) relative to its most immediate higher node. At each level
there are assumed N; node positions, i.e., n;& N;. m; is the recursive relation-
ship m; = n;;, m;, definedfori>2, Ifi=2, m =n,_,. Hi=1, nym;=n,.

Axiom 1: The module, Snim. , controls the invocation of the set of valid functions

on ifts immediate, and only its immediate, lower level, {Fn_ﬂn‘m, } That is,
¥ 11

¥ i¥n, €N, a1 » 1 (8 o F yA{{om,#n,_nm)-»S 4 F Y1 (1)
i+l i+l nymy nym, BTy b I T S T A nm, njmj

Thus, the module, S,, ., cannot control the invocation of functions on its own
level, e

It also follows that the module, S,,_mi , cannot control the invocation of its own
function. *

In addition, the 'no GOTO' concept of structured programming is therefore con-
sistent with the control system2. For example,

If 'C GOTO D' exists, C loses control. e.g., C can

control itself to terminate. In addition, if 'D GOTO C’

exists, D is controlling C and, in effect, is controlling

itself.
Theorem 1.1: A function, C, cannot invoke another function, D,which invoke funcion
Cfor then T would be controlling itself.

C 6(DoC)

21

Awwmovmmmuhwmm Ammwgwmmmﬂmmmm —Nﬁgmﬁ ﬂmwf

o2y

d] = E_cm HWAISAG |03U0D jeulIOg Yl :E anbiy

o

Elorlydly (oes2Ey ()84 L84 Moy Ly

22

Corollary LL1: A logical antecedent cannot be asgsigned by its consequent if a repet-
titive relationship controls the execution of the antecedent.

e.g., If function C is comprised of 'if G then D'
G cannot be assigned by D under the condition

stated above.

Theorem 1.2: If a function from level;,; is removed and the controller module at
Tevel; still maintains its same mapping, the function at level,,, , gy , is
extraneous. The extraneous function is a direct violation of ax10m1 for if the
function is not removed, S, ¢ F, .. .
By My

NOTE: Violation of theorem 1.2, in common practice, manifests itself in modules
with many user options. With respect to the entire system, the use of extraneous
functions proliferates test cases and complicates interfaces (c.f. Figure 1).

Corollary 1.2.1: Consequents of a decision do not interrogate the antecedent for
this would result in an extraneous function,
e.g., 'if G then D' where D implies 'if G then E'
must be reduced to 'if G then E'.

Theorem 1.3: Assignment to a variable is restricted to one process when more
than one process is concurrent. This is true because modules may only invoke
valid functions, and a valid function has only one output value for a particular in-
put value.

Axiom 2: The module, Snm, - is responsible for elements of the output space,of only
Pam , such that the mapping F Q,m)is P, . Thatis,
m, ii 1

¥ j¥nm d1S n,’ [(S m, ° Pnimi) A ((“jmj’“imi)"snimi # Pnjmj)] (2)
Thus, there must not exist any member of the input space for which no member of
the output space is assigned. For, if this were not the case, we would have an in-
valid function.

Theorem 2.1: There may be more than one formulation for a particular function.
It is only necessary that the mapping be identical. Equivalent computer functions
may require a different formulation due to timing restrictions, etc.

Axiom 3: The module, Snlm , controls the access rights to each set of variables,
{Y LTS whose values défine the elements of the output space for each immed-
1ate ‘and only each immediate, lower level function.

¥i¥ B4 € N

it .m. s,
i+l n g n.n, 0y, B0y

3i 8 , (S oY)A((nm =n+li 1) Snimi¢ Ynjmj)] (3)
NOTE: If any two modules, Snm and Snjim] , require the same function formula-
tion, the same set of computer residing instructions can be used for the

functions as long as the access rights of the variables are controlled via axiom 3.

23

Theorem 3.1: The variables whose values define the elements of the output space
at level; are a subset of the variables whose values define the elements of the out-
put space at level,,, , that is,

Y o {Y
ni, mi ni+1nimi}
Axiom 4: The module, Suimj , controls the access rights to each set of variables,
LA whose values define the elements of the input space for each immed-
iate, and only each immediate, lower level function.

¥ j¥n_ . eN_. dIs LI e YA ({nm, =0, nm)—§ ¢ X Y1y {4)
i+l i+l n;m, ngm, By, Ry kI R S0 U nymg njmj

Thus, the module, Snimi , cannot alter the members of its own input set, i.e.,
the access to the elements of the input set of Snimi cannot be controlled by S“i’“i'

Theorem 3,4.1: The output set of a function cannot be the input set of that same
function. If y = f(y,x) could exist, access to y would not be controlled by the next
immediate higher level.

NOTE: Adherence to theorem 3, 4.1 simplifies error recovery techniques associa-
ted with parameter passing and functionally dependent iterative processes.

Theorem 3,4.2: The output set of one function can be the input set of another
function only if said functions exist on the same level and are controlled by the
same immediate higher node. If y = fi{x) and g = £, (y), both functions exist at the
same level. If g = f, (y) is at a lower level, access rights to the input set y imply
v is determined before y exists. y = f; {x) at a lower level implies an alteration
to the input set of g = f,(y).

Theorem 3,4.3: Each member of the set of variables whose values define the
elements of the output space of a function is either a variable of the output space
of the controller or is a variable of the input space for any of the functions on the
same level excluding the variables of its own funciion.

¥ Y0.m, € Yam Ynm, € {Ym.U{{Xn-m-}-Xn.m.}}
11 i i i i1 i

NOTE: Violation of theorem 3,4. 3 in common practice, manifests itself in
modules that calculate by-product results for anticipated users: e.g., a Shutile
module that calculates the position vector of a vehicle might also calculate
altitude, apogee, and perigee, instead of creating separate modules to perform
the separate functions.

Theorem 3,4.4: Each member of the set of variables whose values define the
elements of the input space of a function is either a variable of the input space
of the controller or is a variable of the output space for any of the functions on
the same level excluding those variables of its own function.

¥x eX _,x _ € {X vy, }-v }}

24

Axiom 5: The module, Sam , can reject invalid elements of its own, and only
its own, input set, Qnm , that is,

¥ j¥nm d!S , (s o Q YA {({nm.*pnm.) S
11 nimi nimi nimi | i nimi?‘ anmj)] (5)

Axiom 6: The module, Sam, , controls the ordering of each tree, {T om b, for
the immediate, and only on'the immediate, lower level. e

¥ ¥, €N, 4l s"imi' [(S“imi o T“i+1“im) A ((n; Ty Ry m,) =S & T 1 (6)

Thus, the module, Sym controls the ordering of the functions, the input set,

and the output set for'each node of {Tn oo
11

NOTHE: The ordering of a set of functions determines the invocation so that a

gequence of the said functions is establighed.

A process, €, is a function scheduled to occur in real-time.

If two processes are scheduled to execute concurrently, the priority of a process,
@ determines precedence at the time of execution.

If one process has a higher priority than another process, the higherpriority pro-
cess can interrupt the lower priority process. The lower priorily process is re-
sumed when the higher priority process is either terminated or in its wait state,

Theorem 6.1: The priority of a process is higher than the priority of any pro-
cess on its mosi immediate lower level.

Theorem 6.2: If two processes have the same controller such that the first has
a lower priority than the second, then all processes in the control free of the
firgt are of lower priority than the processes in the control tree of the second.

Theorem 6.3: The ordering between members of any given process tree cannot

be altered by an interrupt. For, if process A is of higher priority than process

B, process A interrupts all of B, i.e., the priorities of the dependent processes
of B are less than the priority of B.

Theorem 6, 4: A module, Sum, , controls the priority relationships of those pro-
cesses on the immediate, and only the immediate, lower level.

VIR g Wy N 38, fog #w, 6, w008, . be i

m AUnm e nam (S ele. . be]
1 110 1™y 3 N

1" i+ B Ty

Corollary 6.4.1: An explicit priority relationship exists among each pair of pro-
cesses at the same level which branch from the same most immediate higher
level node.

NOTE: If the prlorlty of process, €am, , is greater than the priority of, Qbm , and
the priority of € bm, , is less than the priority of qu , the controller at node m;
does not control the priority relationships of Cam, and QcmI To avoid a vmlatlon
of theorem 6.4, the priority relationship of Qam and 8c,m, must also be stated
explicitly.

25

Corollary 6.4.2: If a process, enimj , can interrupt another process Qwimi , the
control tree of um, can interrupt €.m and each member of the conirol tree of
11

Wi
i

Corollary 6. 4. 3: Since S, controls the priority relationships of the set of pro-~
cesses {9ni+1nirrxi . , ther it itself cannot interrupt any member of the processes
of the control ‘mf'ee{'l"nmnimi .

Corollary 6.4, 4: A process cannot interrupt itself,

Lemma 6.4.4.1: The multi-program statement WAIT is an implicit decision of
a process to interrupt itself at a future time and therefore is not consistent with
the control system.

Corollary 6.4.5: A process cannot interrupt its controller,

Corollary 6.4.6: A process, enimi , that can interrupt another process,
.. - affects the absolute time loss for anmj.

i
Theorem 6.5: If the antecedent of a decision within a module is a time relation-
ship, the relationship is extraneous. For, only if the relationship is removed,
could the ordering be controlled by the next higher level.

e.g., '(time = tl) — A 'can be replaced by A where the

controller schedules A at time tl.
Theorem 6,6: If a function is invoked by a CALL or SCHEDULE, the correspond-
ing module of said function can invoke another function by a CALL.,

Theorem 6.7: A SCHEDULE of two processes may be commutative, but a CALL
of two functions is not commutative.

Theorem 6. 8: If a function, E,_,, ., is invoked by a CALL, the module corre-
sponding to the function, Sam; ; tannot invoke a process. If the module schedules
a process and the set of operations of the function, ¥, , is performed before
the process is executed, the module does not control the scheduled process.

Theorem 6.9: A SCHEDULE must always cause the processes invoked to be de-
pendent so that the higher level maintains control at all times.

Theorem 6,10: The maximum time for a cycle of a process to be completed or
delayed can be determined. Consider a particular level which has N processes.
The nth process has a frequency, fycycles per second, such that the period, 1.,
for the nth process is 1/f,, and the total maximum execution time for that pro-
cess is Aty. The jth process has a maximum number of cycles t,f; during time
tn. Then tnfj Atj is the maximum time a process could consume during t,.

From corollary 6.4.1, there exists priority relationships for N processes such
that

> e >p > 8
1 m, 2 m... nimi. .. Nimi

26

Therefore, process n can be completed within time {,if its maximum comple-
tion time, t., is less than t,where

J

=&t +
fe= 5 'A% A

and J equals the total number of processes of higher priority than process n
on the control level of n. Also, the maximum delay time for process n is the
maximum completion tirme for the process of the nearest higher priority on its
own level,

THEQREM: It is possible to control all functions of any given software problem
guch that one controller controls all functions.

If we have only one level of control, every function can be performed, all access
rights can be allocated and the ordering between functions can be controlled.

Thus, it is always possible to perform every required function of any software
gsystem by adhering to the six axioms of the control system.

REAL-TIME CONTROL SYSTEM

The design of any system which does not have the potential to assign the same
variables concurrently is deterministic. In this type of system, functions can
either be functionally independent, functionally dependent, or mutually dependent.

An independent function is one in which the output set is not the input set of
another function. A dependent function is one in which the output set is an input
get of another function. Two functions are mutually dependent if the output set
of the first is the input set of the second, and the output set of the second is the
input set of the first.

The design of any system which has the potential to assign the same variables
concurrently is non-deterministic.

A system is able to provide for mutually dependent functions to be executed con-
currently if the HOS axioms are applied in real-time. With such a system,

the operator need not memorize permutations of proper operational sequences.
In addition, the software system is able to handle error detection and recovery
for all operator-selected processes by simple algorithms; rather than by special
algorithms for each operator selection or by complicated table look-up algorithm

schemes.,

Consider a typical Shuttle example of a non-deterministic system where the
modules M; and M; are mission phases. M and M, , if executed in parallel,
could both perform the same function of Guidance, Navigation and Control. In
this case, a mechanism is needed to prevent the M; and M, processes from con-
flicting with each other.

27

Let us now consider a dynamic scheduling algorithm {(or structuring executive).
The scheduler: 1) controls the ordering of those modules which can vary in real-
time dependent on operator selection; 2) assigns priorities to processes based on
the relative priority relationships, according to axiom 6, for each control level;
3) prevents a violation of the HOS axioms so that no two processes can conflict
with each other; and, 4) determines when the total resources of the computer are
approached. Such a dynamic scheduler would assume the following tools: pro-
cess locks, data locks, and a scheduling algorithm which provides relative and
variable priorities. The process lock for each process locks out lower priority
processes other than those on its own tree from assigning data for as long as

the process is active, {i.e., executing or in the wait state). Data locks within

a process temporarily lock out allother processes from reading elements of a
data block when that block is in being updated. The controller for a process

is a real-time scheduler. The scheduler invokes a process, via the schedule
statement, to automatically set a process lock, assign a priority, and set-up
data locks for the process invoked.

Each scheduled process is dynamically assigned a unique priority set which
bounds unique priority sets of its dependent processes. The priority of a
process is determined by its 1) level of control; 2) order of selection by the
operator; and, 3) predetermined priority relationships. The highest priority
process is, by definition, the highest level controller. Each controller has a
higher priority than the processes if controls. In order to compare the priorities
of two processes, a process chain up the tree for each process is made until one
level before the branches intersect. The priorities of the parent processes at
that level determine the priority of the two processes in question, i.e., the pro-
cess with the highest priority parent has the higher priority. Thus, we have a
system where a process and all its dependent processes are either all higher or
all lower than another non-dependent process, and all of its dependents. Con-
'sider Figure 3 to be a subset of the Shuttle system, S.

5..5,,5,,8 - are the ascent mission phase, atmospheric entry
1772’73 74 o .
mission phase, astronaut display, and abort
mission phase respectively;

Sy1:591:53; - are the ascent guidance (G,), ascent navigation
{N,), and ascent vehicle control (C,) respectively;

S12’ 322,832 - are the entry guidance, Gg, entry navigation, Ng,
and entry vehicle control, Cg, respectively;

5121’ S21 1 - are navigation state extrapolation, and measure-
ment incorporation respectively.

Thus, for example, in Figure 3, the relative priorities of ascent guidance, Sy.
and measurement incorporation, S,y are determined by comparing the priorities
of the parent mission phases, S; and S,.

Each module defines priority relationships for each function it controls. For
example, S controlling {S} might have the priority relational information:

((8;. 8;)<(8;)). $S;is a function invoked by a CALL and therefore, has the
same priority as the scheduler, S. The priorities S; and S, are initially equal,
but their priorities (and thus, priority seis) are decided by the ordering of
schedule invocation. Yet S; and S, are always of lower priority than S;. A

28

typical Shuttle relationship is ('CVE>@E,> Ny), where the dependent relationships
between Control, Guidance and Navigation are maintained on a fixed relative
priority basis. In the latter example, Cycan interrupt Nr. Cgis functionally
dependent on Gy, i.e., Cguses the output set of Gyas its own input set. In add-
ition, a mission phase schedules Niat a higher frequency than Gg. At all times
the priority relationships of Cg, Gz, and Ni remain fixed.

If Syis selected first, S,cannot interrupt S, as long as Sy, or any of its dependent
processes are being executed. When 5, is in a wait state, S, can execute, but only
if §; is not ready to execute. When Syis ready, process set S, interrupts process
gset S,. If the 5, set attempts to assign data process locked in the S; set, S;and
its dependents are terminated by the scheduler. At this point the last display

is regenerated by the scheduler of the terminated process, thus giving the
astronaut complete visibility. If however, S;, when it becomes active, attempts
to assign data which is process locked by S;, Sgis terminated since S;has a
higher priority lock than S,. If S:attempts to read data process locked by 8;, and
that data is presently being assigned by the other set, the Sy process waits for the
Siblock of data to be updated. Likewise, S;must wait to read data presently being
assigned by S,.

The operational levels of a system are, by definition, those levels where the
operator has at least one option. Each level has the potential to be an operation-
al level. Consider the Shuitle example. The operational level, S, allows the
astronaut to select, reselect, proceed from, or terminate S;, S;, or Syvia 53.
Operator errors at each operational level are prevented via the process lock
mechanism. Due to HOS axioms, at a non-operational level (i.e., one where a
conflicting process is not initiated by the operator) an error of this type would
not occur. Without a static analyzer, however, the process lock mechanism of
the scheduler would discover the error dynamically. Of course, the analyzer
avoids an expensive way to find a software error.

Alternatives for reselecting or terminating an existing process depend, to a
large extent, on desired operational procedures. The scheduler could display a
'select' or 'terminate' option for each operational process. Or, the operator
could request the highest level scheduler which has the highest priority to ter-
minate a specific process. If S,;is selected when S;is in the queue, either the
first S, or the second, is terminated.

Consider two processes, S;and S,, where S has a higher priority than S,.
Scheduler Sy schedules Sy . S could have a very low or a very high priority
relative to but less than S;: but relative to Sy, S;and all its dependent pro-
cesses have higher priorities. Thus, if Sy is controlled by a DO WHILE instead
of a cyclic schedule, 8,and its dependent processes are locked out for the dura-
tion of the DO WHILE. However, if Sy is scheduled cyclically, S. can be pro-
cessed when S, and its dependents are in the wait state. In conventional priority
schemes, this would not be the case, since S; could be arbitrarily assigned a
priority less than S;but greater than Sy . Thus, the use of a DO WHILE con-
struct as a substitute for a cyclic process is discouraged. It is interesting to
note that a DO WHILE within a non-multi-programmed function can never be
terminated by an outside controller. Thus, in this case, one would be advised
to use a DO FOR WHILE ingtead.

Errors in traditional MP systems are either caused by data or timing conflicts.

29

The application of 'HOS prevents both types of conflicts. The axioms imply that
the non-local variable is explicit‘gy controlled. The regtrictions imposed are
consistent with reports of others®: 7 who have found that implicit control of non-
local variables tend to produce programs that are difficult to understand. The
methods for proving each computer fuaction to be valid is less cumbersome,
for there is no longer a possibility of side effects (inputs cannot be altered) or
redefinitions (outputs are explicitly subsets of the results of invoked functions).
Axiom 6 prevents relative timing conflicts between processes and guarantees
time-critical events. (Those events or cyclical processes which are time-
critical and therefore synchronous in nature, are scheduled as the highest
priority process in the system.) Finally, when memory or timing limits of the
computer are reached, the dynamic scheduler resurrects the software system by
terminating lower priority processes and leaving only the highest priority pro-
cesses in the queue., With these concepts, it is immaterial whether breakpoints
occur at every basic machine instruction, every HOL statement or via some
other method. The key consideration is the absolute minimal time required to
service highest priority processes and highest frequency interrupts.

Conventional real-time software systems can have infinite interfaces, or a very
large finite number of interfaces to verify. This verification has been tradition-
ally performed by exercising the software system on a dynamic basis. Such a
system cannot be exhaustively tested. Given the HOS control system, it is now
possible to design a system with a small finite number of logical interfaces to
verify. These interfaces can be exhaustively tesied by ansalyzing a given software
system on a static basis. Thus, the more expensive methods of simulation and/
or dynamic verification can be limited to unit performance testing.

The analyzer verifies the system for correctness by checking for all violations
of the axioms. Second, the analyzer provides performance interface testing for
absolute timing consistency. It is only necessary to provide timing analysis be-
tween functions on the same control level (c.f. theorem 6.10), Third, ina
system which is not deterministic, the analyzer would predetermine the potential
data conflicts that could happen in real-time by distinguishing between operation-
ally assigned relative priorities and fixed assigned relative priorities. (Of
course, in real-time, the system scheduling algorithm would automatically pre-
vent the conflicting processes from executing in parallel.)

Included as input for the analyzer, then, is the information needed for each in-
vocation of control: component definitions, processes scheduled, cyclic timing,
absolute time, and fixed and operational priority relationships. In addition, for
the anslyzer performance interface testing, predicted (and eventually actual)
time for each function are provided as input.

DEVELOPMENT OF THE SHUTTLE PROTOTYPE PROGRAM

The development of the prototype software system is both determined and facili-
tated by formalized definitions since they are the same for all the well-known dis-
ciplines of design, implementation, verification, management and documentation8.

The Shuttle prototype program is consistent with the HOS phases of development.
The first phase defines a general problem. This includes those parts which are
performed by and interface with a computer. The second phase defines the

30

algorithms for the functions performed by a computer. These first two phases
are hardware and HOL independent. The third phase evolves the algorithms to
include architectural aspects (hardware, HOL, etc).

In a real-time system, an asynchronous executive, which handles interrupts with
unique priorities, is able to maintain the natural state of the real-time functions
and their relationships for all phases of software developmenti. 1t is for this
reason, the real-time prototype program is a multi-programmed system.

Each completed module in the system is entered into an official library as soon as
it is verified and approved by designated experts of the appropriate area of ex-
pertise. The "assembly' control supervisor approves each module for inclusion
into the official library. These official modules can be collected, top-down, to
form a given defined system from each HOS component definition. (Conceivably,
a subset of the development collector in a flight computer cculd rearrange com-
ponents to provide for real-time changes to the software system.)

The HOL, HALQ, has provided us with the basic constructs needed (i.e.,
IFTHENELSE, DOCASE, DOFORWHILE, CALL, and SCHEDULE") to aid in
coding HOS software. The structured flowcharts10 (Figure 4) help the program-
mer to arrange code in a linear sequence. The functional control map (Figure 3)
helps the programmer to arrange functions according to control levels,

SCHEDULE A

Figure 4: Functional Structured Flowcharts

{Flow is assumed to return in line at the compietion of every object of each decision.}

*HAL does not presently have the capability to provide priority relationships as
discussed gbove.

31

The modules are presently verified by a statement level closed loop simulator
with environment modules for the flight computer, vehicle, astronaut, universe,
etc, It is our aim to minimize the necessity for dynamic simulation by use of
the formalized HOS language, HOS axioms and the tools which include the collec-
tor, the analyzer, and the structuring scheduler algorithm,

CONCLUSION

HOS concepts are now being applied to a prototype Shuttle flight software system.
By providing software with its own meta-software and its own universal system,
not only can we produce reliable systems, but we can also communicate these
systems to others. Development and real-time flexibility are not sacrificed.
The only limitations applied are those which prevent a potential error from
occuring, i.e., the only flexibility missing is that which allows for flexibility

of errors.

ACKNOWLEDGEMENT

The authors would like to express appreciation to Donald DeVorkin for his critical
review of this paper, and to Adele Volta for editing assistance.

This paper was prepared under Contract NAS8-4065 with the Lyndon B. Johnson
Space Center of the National Aeronautics and Space Administration.

The publication of this paper does not constitute approval by the National Aero-
nautics and Space Administration of the findings or the conclusions contained here-
in. It is published only for the exchange and stimulation of ideas.

10.

32

REFERENCES

Hamilton, M., "Management of Apollo Programming and ifs Application to
the Shuttle," CSDL: Software Shuttle Memo No. 29, May 27, 1971,

Dahl, O.J., Dijkstra, E.W., and Hoare, C.A.R., Structured Programming,
Academic Press, London and New York, 1972,

Mills, Harlen, "Top-down Programming in Large Systems,' Courant
Computer Science Symposium, June 29 - July 1, 1970.

Hamilton, M., ''Computer Got Loaded, "' Datamation, March, 1971.
Hamilton, M., "First Draft of a Report on the Analysis of Apolle System
Problems During Flight,'" CSDL Shuttle Management Note No, 14,
October 23, 1972.

Wulf, W.A., and Shaw, M., "Global Variable Considered Harmful," Sigplan
notices, February, 1973.

Knuth, D.E., "The Remaining Trouble Spots in Algol 60," CACM 10,
October 10, 1967.

Hamilton, M., Zeldin, S., "Higher Order Software Requirements,” CSDL
E-2793, August, 1973.

Intermetrics, Inc., "HAL/S Language Specification,” January, 1974.

Hamilton, M., Zeldin, 8., "Top-down, Bottom-up, Structured Programming
and Program Structuring,' Rev. 1, CSDL E-2728, December, 1572.

