Prototyping Distributed Environments with 001

Margaret Hamilton
Ron Hackler

Summary _

Conventional software based system prototyping and development techniques rely
upon an “after the fact” approach. They concentrate on fixing wrong things rather
than on doing things right in the first place. Because of the lack of rigor, and
therefore control, inherent in the use of these methods, the integrity of a system is
reduced, there is a compromise in functionality, deadlines are missed and significant
dollars are wasted.

There are many new tools intended to address the desires of the software based
systems marketplace. They usually fit into the category of CASE. Most CASE
products, however, are based on the conventional life cycle; they automate manual
processes of the conventional development process when many of these processes
need no longer be necessary. This is instead of solving the real problem, which is to
define a system correctly in the first place. There is a serious need for an integrated
set of techniques and tools which provides the ability to design systems right; and,
then, automatically prototype or develop them. 001 was created to fill this need.

001 is a new paradigm for system engineering and software development. It is a
hierarchical functional and object-oriented network modeling technique based upon
a unique concept of control. It is used to specify, prototype and develop systems of
arbitrary complexity and size (for both data base driven and real time distributed
environments) using an approach called “development before the fact”. With this
approach, a system has properties of built-in quality and built-in productivity that
support its own development. Unlike with conventional approaches, 001 uses a
preventative instead of a curative approach. As the user uses 001 to model the
behavior and structure of his application system, he inherently models the “life
cycle” of his system.

The 001 tool suite (see Figure 1) is an integrated “automated factory” that automates
the system development process from specification to the generation of complete
production ready code (e.g., Ada or C) with full automated documentation. Each
system developed with 001 is defined with built-in properties which include:
integration of all aspects of its definition (control flow, data flow, state transition,
data structure, etc., are all inherently defined and integrated by the use of the same
language); reliability (75%-90% of all errors are inherently eliminated); reuse (all
objects are reusable); ability to capitalize on parallel environments; implementation
independence (source code can be generated for any environment--including
distributed and parallel--from a given specification); maintainability (effects of all
changes are traceable and understandable) and high productivity (results have
shown significant leverage). Using 001, developers and maintainers respond to any
change in the system by making changes to the specification, not to the code;
production-ready code is regenerated automatically by the tool. The 001 tool suite
has been defined and automatically generated by itself.

Distributed control systems can be defined using stylized models defined with 001’s
specification language, 001 AXES. These models are based on the language
mechanisms of 001 AXES which support aspects of an application that relate to the

110
0-8186-3040-X/92 $3.00 © 1992 IEEE

distribution of a functional architecture onto a resource architecture. These aspects
of the target system include its environment, resources, interrupts, information
organization, communication strategies, and the functionality that is to be
distributed across the control system. Each aspect has a corresponding graphical
representation which is directly associated with a combination of formal language
mechanisms. The result is a reduction in complexity in the prototyping and
development process. The combined set of graphical representations forms a
language which provides a quick and friendly building block kit. This language can
be used by a user to define models having distributed properties without having to
know the details corresponding to the graphical representations. Because of the
formal language details associated with the graphic representations, a system may be
automatically implemented by the resource allocation generation tool of the 001 tool
suite. This approach provides the user a direct path from their graphical
representation of the functional architecture (as a distributed system) to a fully
executable distributed implementation.

The set of graphical representations is used as a modeling tool to define a hierarchy
of real time distributed controllers where the parent controller is in charge of its
children as controllers. A real time distributed controller coordinates
communications, interrupts and resources between it and other controllers. A
controller performs a portion of a distributed functional system which is defined to
respond to some environment. The behavior and structure of a controller is
completely defined using 001 real time, asynchronous mechanisms.

The Xecutor component of 001 is used to support rapid prototyping and
development for a distributed environment. The Xecutor, a 001 “machine”, is a
combination of a meta operating system and simulator that understands 001
semantics. It provides a realtime, asynchronous, event-driven execution
environment with multiple lines of control over concurrently executing functions
(and is thus multi-threaded). The 001 Xecutor supports the real time execution of
each distributed controller as an operating environment and automates the
communications strategy between controllers. A 001 Xecutor is associated with each
controller. We will discuss an approach using the graphical language and
distributed Xecutors for defining and prototyping a system of distributed controllers.

Reusable
Objects

m;z'ly.nmkmm

hierarchy of control

FMap: Functional network in terms
control.

Figure 1: The 001 Tool Suite's
Development Before the Fact Integrated Life Cyde.

11l

