001: A Rapid Development Approach for
Rapid Prototyping Based on a System
that Supports its Own Life Cycle

Margaret H. Hamilton and William R. Hackler
Hamilton Technologies, Inc.

I. INTRODUCTION

The need for rapid prototyping techniques arises because there are no conventional
techniques for rapid development. With experience, it becomes clear that the reason
conventional techniques cannot be used to deliver rapid systems is because they
force the users and developers to concentrate on fixing wrong things up rather than
on doing them right in the first place. Problems are cured rather than prevented.
Every system is defined with a technology which expects a development to be based
on “alchemy” and trial and error. When critical issues are dealt with too late or
“after the fact”, both the quality of a system and the productivity in producing it
become unacceptably low. The result is that system integrity is reduced at best.
There is a compromise in functionality. Deadlines are missed. Time and dollars are
wasted. The competitive edge is lost and opportunities are gone.

If it were possible to develop software based systems with a marked improvement
in productivity, there would not be a need to differentiate between methods for rapid
prototyping and rapid development. To make this happen, however, it will be
necessary to resolve what some believe to be the highest priority issues surrounding
the conventional development process. Take, for example, integration.
Integration happens too late into the development process. During the requirements
process, data flow is defined using one method, state transitions another, dynamics
another and data structure using still another method. Once these aspects of
requirements are defined, there is no way to integrate them. Integration is left to the
devices of a myriad of developers well into the development process. The resulting
system is hard to understand, objects cannot be traced, and there is no
correspondence to the real world.

There are several other examples: Errors are eliminated too late. 1t is the
accepted practice that a system be defined from the beginning to be ambiguous and
incorrect. As a result, interfaces are incompatible and there is a propagation of
errors throughout development. The system and its development are out of control.
Once again the developers inherit the problem. Similarly, flexibility and the
ability to handle the unpredictable are issues that are dealt with too late. Systems
are not defined at the beginning to handle changes or recover from emrors. As a
result, porting is a new development for each new hardware, operating system or
implementation language configuration; critical functionality is avoided for fear of
the unknown, and maintenance is the most expensive part of the life cycle.
Preparing for distributed environments happens too late. Systems are first defined
and developed for a single processor environment. They are then re-implemented for
a distributed environment. The result is at least one unnecessary development
process of the system. Reusability happens too late. There are no properties in
system definitions to help find, create and use commonality. The result is that

TH0380-6/91/0000/0046$01.00 © 1991 IEEE *

redundancy is a way of life. Errors propagate accordingly. Automation happens
too late. A definition is given to developers to turn manually into code. As a
result, new errors are created and a process that could have been mechanized is
performed over and over again. Run-time performance analysis (the process
whereby decisions are made between algorithms or between architectures) takes
place too late. Insufficient information is used to define system performance. A
system is defined without consideration of how to separate a system from the
~ environment in which it operates. The result is that design and implementation
decisions depend on analysis of after the fact and ad hoc implementation results.
Design integrity is considered too late. More often than not, a system design is
based on short term considerations. As a result, development is driven in the
direction of failure.

II. THE SOLUTION

The solution to the problems discussed above is an approach which expects each
development to be based on predictive discipline and an integrated system science.
An example is a Development Before the Fact Approach which dictates that each
system be defined with properties in its definition which support its own
development throughout its life cycle. With such an approach, many of the tasks
associated with the traditional sequential “waterfall” development process could be
performed in parallel. A system would inherently integrate and make understandable
its own real world definitions; maximize its own reliability and predictability and
its own flexibility to change and the unpredictable; capitalize on its own
parallelism; maximize the potential for its own reuse and automation; support its
own run-time performance analysis and the ability to understand the integrity of its
own design principles. Because of these properties systems would be developed
with built-in quality and built-in productivity assurance. The result would be
unprecedented productivity in a system’s development.

A language for this approach would have the capability to define any aspect of
any system, including its functional architectures, resource architectures and
resource allocation architectures throughout all of its levels and layers of definition.'
Such a language can always be considered a design language, since design is a
relative term. One person’s design phase is another person’s implementation phase.
One person designs requirements. Another designs specifications. Still another
designs code. If this language is truly successful in one phase as a design language,
it should be successful in any phase This language would have mechanisms to
define mechanisms for defining systems. “Although the core language is generic,
the user “language”, resulting from the use of this mechanism definition aspect for
a particular user, can be application specific, since the language is semantics-
dependent but syntax- independent. The use of the collective set of mechanisms, so
defined, defines each object with respect to its interrelationships to other objects for
a given system. As such, using this language to define a system assures that the
system will be object-oriented throughout its development, starting at the very
beginning of its requirements phase. Every system defined with the use of this
language would have built-in properties for supporting its own development.

T
The functional architectire defines what it is the user of a target system wants to do. Associated resource

architectures define the potential execution environments for the functional architecture. The resowrce allocation

architecture is the system that maps the functional architecture to one of a possible set of resource architectures.

47

T

The steps for building a Development Before the Fact system would be as
follows. First, a model” is defined with the language for defining a system with
built-in development properties. Next, the model is automatically analyzed to
ensure that it was defined properly. A software implementation is then
automatically generated consistent with the model. The resulting system is
executed. This step is followed by building the real system. If the real system is
software, this last step may not be necessary, since a final evolution of the software
developed to simulate the model could become the real system.

We will discuss next a technology, 001, which embodies many aspects of this
approach in terms of its abilities to approach a solution for each of the problems
discussed above. The reason 001 lends itself to the rapid prototyping of a system is
that it has been designed, developed and used for the rapid development of systems.

III. 001: A DEVELOPMENT BEFORE THE FACT
APPROACH

001 had its beginnings at the time of APOLLO 11 when Hamilton and her staff
analyzed the on-board flight software in order to find a way to minimize errors. The
result was a theory for defining systems free of interface errors. The first
implementation of this theory was a technology which concentrated on defining and
developing reliable systems in terms of functional hierarchies [1]. The technology
has since evolved into an integrated hierarchical functional and object oriented
network technique based upon a unique concept of control [2,3]. Every system
defined and developed with 001 and its associated automated tool suite has properties
of Development Before the Fact. The 001 tool suite has been defined and generated
with itself.

A. Modeling Environment

The 001 modeling environment makes the assumption that reliable systems are
defined in terms of reliable systems. Only reliable systems are used as building
blocks and only reliable systems are used as mechanisms to integrate these systems.
The new system becomes a reliable system for building other systems. The
building blocks (Figure 1) include types of objects; functions whose inputs and
outputs are members of these types; structures which relate a parent type’ to its
children types and a parent function to its children functions; relations which link
types to types and constraints which define the external boundaries within which a
system may reside.

Every model is defined in terms of functional hierarchies (FMaps) and type
hierarchies (TMaps). All model viewpoints can be obtained from FMaps and
TMaps including data flow, control flow, state transitions, data structure and
dynamics. On an FMap there is a function at each node. For example, the
function, drive the truck, could be decomposed into and control its children
functions, turn on engine and turn wheels ; turn wheels could have children, turn
wheels left and turn wheels right. On a TMap there is a type at each node. For

2 R . o . -
A model is & tentative definition of a system or theory that accounts for all of its known properties.

: Every functien oa & functional hierarchy is a pareat which controls its childrea functions on the next most
immediate lower level nodes. Every type on a type hierarchy is a parent which controls its childrea types on the next
most immediate lower level nodes.

48

(Functional Map (FMap) Type Map (TMap)\

)\ CotniSincure (Z7) Funcion emsem Members of Types
Lw Constraint @ Trpe = = Relations)

Figure 1: Rellable Bullding Blocks

example, type truck could be decomposed into and control its children
types,wheels and engine. A higher level function is defined on an FMap in terms
of its relationships to lower level functions. A higher level type is defined on a
TMap in terms of its relationships to lower level types. For each model, FMaps
are inherently integrated with TMaps. Each function on an FMap has one or more
objects as its input and one or more objects as its output. FMaps are used to define,
integrate, and control the transformations of objects from one state to another state
(e.g., a truck with a broken wheel to a truck with a fixed wheel). Each object
resides in an object hierarchy (OMap) and is a member of a type from a TMap. The
bottom nodes on an FMap contain primitive operations on types which are defined
in the TMap. The bottom nodes on a TMap contain primitive types. When a
system has all of its object values plugged in for a particular performance pass (i.e.,
it is executing) it exists in the form of an execution hierarchy (EMap). With these
hierarchies, all system viewpoints are integrated. A system is defined from the very
beginning to inherently integrate and make understandable its own real world
definitions.

B. The Primitive Control Structures

001 FMaps and TMaps are ultimately defined in terms of three primitive control
structures. Structure decompositions overlay the abstract concept of control onto a
network of primitive nodes where each node has input and output interconnections
to other nodes. A formal set of rules is associated with each primitive structure.
The three primitive structures are: the Join(J) for defining dependent relationships,
the Include(I) for defining independent relationships and the Or{O) for defining
decision-making relationships (Figure 2). With the use of the primitive structures
interface errors are “removed” before the fact by preventing them in the first place.
Interface errors include data flow, priority and timing errors throughout a system
definition to a very fine grained level. It has been the experience of several that
interface errors make up approximately 75% to 90% of the errors that are found after
implementation with a conventional technique. The use of the primitive structures
supports a system to be defined from the very beginning to inherently maximize its
own reliability and predictability.

49

1) Example of the use of the
primitive control structures. A use of
the primitive structures is shown in
the definition of the FMap for system
IndependentRobots, which defines a
system of two robots synchronized to
work in parallel (Figure 3a). In
IndependentRobots, the top function is
decomposed into offspring functions
Finish and Continue. It receives
input, RobotB0O and RobotA0, and
produces output, RobotB and RobotA.
The Or relationship between
IndependentRobots and its offspring is
one of making a decision. The left
child of an Or is chosen when the
result of a partition function is True.
The right child is chosen when it is
False. In this example, either Finish
or Continue will be performed. The
decision depends on RobotB0 and

RobotA0. If processing is to be
discontinued, IsFinished will select
Finish. If not, it will select
Continue. Each of the offspring of
IndependentRobots takes in the same
input and produces the same output,
since only one of the offspring will be
performed for a given performance
pass.

Continue is decomposed into
functions, IndependentRobots and
Process. Continue controls its
offspring in a Join relationship where
IndependentRobots depends on the
output of Process as input. With a
Join, a common dependency is realized
by the fact that one offspring’s output
(in this case, RobotBn and RobotAn)
is another offspring’s input.
IndependentRobots under Continue
cannot complete its performance
without Process since it depends on
the output of Process to provide its
input; once IndependentRobots is
finished, it provides its output to its
parent Continue. Since Turn and
Move are controlled by Process as

For dependent relationships

Output3 Inputl
Ou@ut 4 Parent Input2

J

TN
Output3 Left Locall Locall Rightlnputl
Output4 Child Local2 Local2 Child Input2

Rules Governing Join(J):

Inputs to é)amt are identical to inputs of
right offspring (including order).

Outputs of parent are identical to outputs
of left offspring (including order).

Outputs of nght child are identical to
inputs of left offspring (including order).

For independent relationships

Outputl Inputl
Output2 Input2
Output3 Input3,
Output4 Input4

Outputl Left Inputl Output3 RightInput3
Output2 Child Input2 Output4 Child Input4

Rules Governing Include(I):

A parent sends all its inputs to its children.

Children send all their outputs to their parent.

Order of inputs and outputs is maintained.

Children do not share inputs or outputs.

Left Child receives the first parent intputs.
Right Child reccives the rest.

Left Child sends the first outputs to parent.
Right Child sends the rest.

For alternative relationships

Outputl Inputl
tp Parent Input2

Output2 pu
« ®w/*d

]
ﬂ
utl
*
Y
Ou

<
t1 Left Inputl Outputl Right Inputl
omﬂtz Child Ingutz 0u$uut2 & lngﬁzz

Rules Governing Or(O):
uts of both offspring are identical
lnpm inputs of parent(including order).
Outputs of both off spring are identical
to oz?uu of parent (including order).
Inputs of partition function are identical
to inputs of parent (including order).

Figure 2: The Three Primitive

50

Control Structures.

RobotB,RobotA 2MASPEndent p 1 B0, RobotA0)

—N
Q:isFinished (RobotB0,RobotAD)

/

RobotB,RobotA =Finish(RobotB0,RobotA0) RobotB,RobotA=Continue(RobotB0,RobotA0)
J

Ind dent RobotBn,RobotAn=Process(RobotB0,RobotA0)
RobotB,RobotA = Rbbots | (RobotBn,RobotAn) 1

RobotBn=Turn(RobotB0) RobotAn=Move(RobotA0)
a. Control Flow Oriented Graphics

/ ().JisFinished ™~
Move RobotAn
RobotB Independent
Turn 2200 Robots Robota
Pro o} ,
= Continue RobotB
RobotA0 ——
RobotB0 B - dependent Robots
. ependen =/

b. Controlled Data Flow Oriented Graphics

Flgure 3: Use of the Primitlve Structures in a Functional Hlerarchy.

independent functions with an Include, each takes its own input from its parent.
Thus, for example, Turn takes in its own input RobotB0 directly from its parent
and produces its own output RobotBn, giving it directly to its parent Process.
Move, likewise, takes its own input directly from its parent and produces its own
output. In this relationship between the parent and its offspring, the offspring do
not communicate with each other. Notice in the use of each primitive structure that
inputs are traceable down and/or across (in this example from the right child to the
left child) a hierarchy and outputs are traceable across and/or up a hierarchy.

IndependentRobots, a recursive function, controls continue which controls
IndependentRobots. Recursion in a map is simply a repetition of the map inside of
itself; it is a shorthand notation for indicating that the lowest /ndependentRobots in
the hierarchy has the same definition as its ancestor; when instantiated, this
definition is plugged in at the leaf function and the control hierarchy is extended
downwards during execution.

Although the IndependentRobots example is shown in terms of a formal graphics
tree format which emphasizes control flow, 001 does not dictate a particular
syntactic form. It can be defined in some other graphics form, such as controlled
state diagrams or controlled data flow diagrams (see, for example, a definition of the
same system which emphasizes controlled data flow, in Figure 3b). It can also be

51

defined in textual form, such as in an algebr.ic or natural language. Any syntax can
be used as long as the semantic rules of th : technology are adhered to. In all these
forms the same information is presented, out that which is highlighted varies.

2. Real-time distributed properties of the primitive control structures.
Although the primitive control structures were derived from a theory which was
intended for defining systems to be free of interface errors, we discovered later that a
hierarchy defined with the primitive control structures also results in properties for
supporting real-time parallel environments. Each 001 system is event interrupt
driven based on its functional architecture relationships and demand driven based on
its resource architecture relationships. An object is therefore always both demand
driven and event driven at the same time. Primitive functions are available for
activation when all of their input events are available. An abstract function has a
lifetime that contains the lifetimes of its immediate children.

Each function in a hierarchy has a unique priority; the existence of an event can
cause a system to automatically reconfigure and execute a higher priority function.
If, in the use of the Include structure, the left offspring always has a higher priority
than the right offspring in system IndependentRobots, both offspring can
independently begin when each of their inputs becomes available if there are two
processors. If one were to simulate the behavior of two robots, failure of Turn’s
processor forces an interrupt of Move's processor if Move is processing; Turn can
starve Move of its processor resources; if Move is not processing, then if
RobotA0 becomes available, Move must wait until Turn is finished processing.

Given one processor, if neither offspring has been initiated, Turn can initiate when
RobotB0O becomes available or Move can initiate when RobotA0 becomes
available; if both arrive simultaneously, Turn initiates before Move. Concurrent
processing can also take place within a Join structure when more than one input is
being processed. In this example, the decision function IndependentRobots uses the
function IsFinished to decide whether to Finish or Continue. Since IsFinished
needs both its inputs to execute, the decision is blocked until both inputs are
available. ‘

C. Reusability with Defined Structures

Any system could be defined completely in terms of only primitive structures,
but there is often a desire to use less primitive structures to accelerate the process of
defining and understanding a system. The degree to which a system has symmetry
or asymmetry determines the amount of reusable patterns that can be derived in
terms of structures. Non-primitive structures can be defined in terms of the
primitive structures or in terms of other non-primitive structures. Coinclude is an
example of a system hierarchy pattern which happens often when using primitive
structures (Figure 4a). Its FMap was defined with primitive structures, Include and
Join. Within the Coinclude pattern, A and B are the only leaf node functions that
change. The Coinclude pattem can be defined as a non-primitive structure in terms
of more primitive structures with the use of the concept of defined structures. This
concept was created for defining reusable patterns. Included with each structure
definition is the definition of the syntax for its use (Figure 4b). Its use (Figure 4c)
provides a "hidden repeat” of the entire system as defined, but explicitly shows only
the elements which are subject to change (i.e., functions A and B). The Coinclude

52

a. FMap

x2,x1 = Clone2:Any(x)
select inputs for

YbYa=_left an right 02,x1)
1

¥, = select input for right(x1)

b. Use
al,bl = Process(a,b)

a

al = TaskA(a) bl = TaskB(a,b)

Figure 4: Co-Include Structure Dsefinition.

structure is used in a similar way to an Include structure except with the Coinclude

the user has more flexibility with respect to repeated use of an object state, ordering
of objects and selection of objects. Each defined structure has rules associated with
it for its use just as with the primitive control structures. Rules for the non-
primitives are derived from the rules of the primitives. With the use of
mechanisms such as defined structures, a system is defined from the very beginning
to inherently maximize the potential for its own reuse.

Async, shown in Figure 5, is a real-time, communicating, concurrent,
asynchronous structure. The Async system was defined (Figure 5a) with the
primitive Or, Include and Join structures and the Coinclude non-primitive structure.
It cannot be further decomposed, since each of its lowest level functions is either a
primitive function or a previously defined type (see Identify2:Any and Clonel :Any
under End, each of which is a primitive operation on any type), recursive (see
Async under DoMore), or a variable function for a defined structure (see A and B
under process). If a leaf node function does not fall into any of these categories, it
can be further decomposed or it can refer to an existing operation in a library or an
external operation from an outside environment. . A use of Async is shown in
Figure 5b. Whereas Turn and Move are independent functions in system,
IndependentRobots, they are dependent, communicating, concurrent and
asynchronous functions in system, DependentRobots. In this example the Turn
function has been updated to incorporate a planning capability into part of
RobotB0’s function, TurnAndPlan, so that the two robots could work together to
perform a more complex task. Here one phase of the planning robot is coordinated
with the next phase of the slave robot, RA2.

53

FMap: Syntax: #

Async:Continue?

O:(iontmue?(l a0,b0)
a,b = DoMore(l,a0,b0)

a,b=End(1,a0,b0) J
I11,a1,b1 = Process(l,a0,b0)
I a,b = Async(l1,al,bl)

b=Clonel:Any(b0)
a=Identify2:Any(l,a0)

a. Definition of Async Structure.

Use: RB,RA = DependentRobots(plans0,RBO,RA0)

lansl, e as lans0,
1,RA1= [nitialize @oRao0
RB,RA = CoordinateTasks(plans],RB1,RA1)

~
Async: TasksDone
N~

RA2 = Move(plansl RA1)
NextStep,RB2 = TurnAndPlan(plans1,RB1)

b. Use of Async Structure.

Figure 5: An Async Structure and Its Use.

D. Definition of Objects with Parameterized Types

Reusability can also be used within a TMap model by.using parameterized types.
A parameterized type is a defined structure which provides the mechanism to define
a TMap without its particular relations being explicitly defined. Each parameterized
type assumes its own set of possible relations for its parent and children types.
TMap, RobotA, part of a simulator definition (Figure 6), is decomposed in terms of
parameterized type, TupleOf, into its offspring types Ports, RotationTime,
TurnRate, PutDownTime, PickUpTime and MfgObject; Ports in terms of TupleOf,
IOPorts in terms of OSetOf, and APordds in terms of OneOf. A TupleOf is a
collection of a fixed number of possibly different types of objects; An OSetOf is a
collection of a variable number of the same type of objects (in a linear order); a
OneOf is a classification of object types of different types from which one type is
selected. Each parameterized type has a set of primitive operations associated with
it for its use. Abstract types decomposed with the same parameterized type on a
TMap inherit the same primitive operations. FMap, StartingPosition (Figure 6b)
uses the Moveto:Output:IOPort operation (see Figure 6d) (an instantiation of the
Moveto:Child:Parent operation of the OneOf parameterized type in Figure 6¢) with
abstract type, IOPort. Is:Input:IOPort (an instantiation of the is:Child:Parent of
One0y) is used to determine which class of JOPort object is to be processed.

A type may be non-primitive (e.g., Ports), primitive (e.g., PickUpTime as a
natural number), a reference to a type outside of its parent domain (e.g., /OPorts), a

54

: bot A éype OneOf: Parent,Child.
TMaps. R n.inilt)isve l rations: | Vatue]
—TTupleOf Abstract | Primitive | Value
MfgObj TP Pors Type = K:Child:Type(TMap);
g\ra&ed TupleOf=~ &E = Copy-Type(Type);
PickUpTime 10Ports\APortlds. (Abstract] @ ik \
(N}:l) AtPort Boole;n =oi\s,‘C(});ild'T : ype);Pe '
PutDowATime TurnRate T (O o o '
wnlune lurn me . .
MNay) MNat) (Nap c. Generic Parameterized Type.
IOPort.
IOForts APortlds %Prre\:iﬁve (o] rau’onslzo Port(TMap)
OSetOf — IOPort = K:Input: ort ap);
| OpeD 10Port = KOutputIOPort(TMap;
IOPort o{ Parts' IOPort = Copy-1OPortIOPort);
OneOf > Grinder R e O oo aOPor)
. . at = Moveto: ut: 0! i
e Ou\ t ConveyorA'ConveyorB Boolean = is:InputIOPort(IOPort);
tnput ONED Boolean = is:OutputIOPort(IOPort);
a. Type Inheritance and Decomposition. d. A OneOf Abstract Type Instance.
RA ZRotate_RobotA(to,RA0) FMaps:

start = StartingPosition(atP,IOPs)

atP = Moveto:AtPort:Ports(Ps) IOP = Moveto:I0Ports(rlOPs)

IOPs ™ Moveto:IOPorts:Ports(Ps) 2Tt y.PositiondOP)
. . coiis:InputIQPort(IOP)
start = ShrhngPosmon(atP,IOPs) ~
end,Ps1 = ResetTo_NewPort(Ps,to0,]OPs)
RA1 = Moveto:RobotA:Ports(Ps1)
RA = ComputeRotationTime(RA1,end start)

b. Functional Specification:

Figure 6: Excerpts of a Simulation implementation of Primitive
Operation: RobotA = Rotate:RobotA(APortid,RobotA).

start = Moveto:InputIOPort(IOF)

reference to a type which is defined elsewhere but is still part of its parent's domain
or recursive. Each parent on a TMap and its children are used as parameters to a
parameterized type that is used to decompose that parent into its children. JOPort
therefore, inherits all of the operations of OneOf.

Copy (Figure 6¢), a primitive operation associated with all parameterized types,
is a universal primitive operation. The universal primitive operations are used for
controlling objects and object states. They create, destroy, copy, reference, move,
access a valne, detect and recover from errors and access the type of an object. They
provide an easy way to manipulate and think about different types of objects. With
the universal primitive operations, building systems can be accomplished in a more
uniform manner.

The TMap properties ensure the proper use of a TMap by an FMap. A TMap has
a corresponding set of control properties for controlling spatial relationships
between objects. One cannot, for example, put an object into an object structure

55

= Moveto:Ports:RobotA(RA0) J rlOPs = Referto:I0Ports(atPIOPs)

start = Moveto:Output:IOPort(IOF)

where an object already exists (one cannot put a wheel on a truck where a wheel
alrcady exists); conversely, one cannot remove an object from a structure where
there is no object; a reference to the state of an object cannot be modified if there are
other references to that state in the future; reject values exist in all types, allowing
the FMap user to recover from failures if they are encountered.

E. Constraint Specification and Analysis

Constraints can be defined for both FMaps and TMaps. The meta-language
properties of 001 can be used to define global and local constraints. If we place a
constraint on the definition of a function (e.g., Where F takes between 2 and 5
seconds), then this constraint will influence all other functions that use this
definition. Such a constraint is global with respect to the uses of the original
function. Global constraints of a definition may be further constrained by local
constraints placed in the context of the definition which uses the original function
definition (for example, where function B uses F Where F takes 3 seconds).
Function F could have a default constraint which holds for all uses such as Where
Default:3 secs. If however, B is defined to take 2 seconds , then B overrides F. The
validity of constraints and their interaction with other constraints can be analyzed by
either static or dynamic means. The 001 property of being able to trace an object
throughout a definition supports this type of analysis. This property provides the
ability to collect information on an object as it transitions from function to
function. As a result, one can determine both the direct and indirect effects of
functional interactions of constraints.

F. Resource Architecture and Resource Allocation Definitions and
Their Relationship to Run-Time Performance Analysis.

Having a technology is one thing. Using it most effectively is another. Take,
for example the process of creating a complete system definition. There are many
ways to define a system. Figure 7 shows three different definitions for system
Transfer2Blocks. The first two definitions are architecture dependent. The third one
is not. The first system Transfer2Blocks implicitly assumes 1 Robot as its
resource. If more robots become available, the functional architecture with it’s
implicit resource architecture and resource allocation architectures would have to be
changed to take advantage of its new resources. Such is the case with the second
model which was defined to implement the system with 2 Robots. It will not work
with one robot or any set of robots greater than two. In both the first and second
models, a change from one architecture version of the system to another affects the
input and output list of every function. There is also a'structural difference in the
FMaps for the two implicit resource allocations of the first two models. One has a
CC control structure and the other has a / control structure.

The third system model provides a solution that is more flexible to changing
requirements than the first and second models, since changes made to the third
model based on changing user needs do not affect other architecture models. The
functional architecture definition can remain the same for any resource architecture.
The alternate resource architecture models can also remain unchanged to perform the
user’s requirements. A resource allocation architecture definition defines the way in
which the resources of the resource architecture are applied to the functional

56

Ds1,Bs1,Cs1,As1,R2 = Transfer2Blocks(Ds,Bs,Cs,As,R) 1 Robot Resource Allocation:

/cc\ Schedule
Cst,AsLRT =y rBlo Co A R) o, [aneter

Ds1,Bs1,R2 = ansferBlock iy b gy

Ds1,Bs1,RB1,Cs1,As1,RA1 = Transfer2Blocks(Ds,Bs,RB,Cs,As,RA) 2 Robot Resource Allocation:
. Schedule

Cs1,As1RA1 = amsferBlock (o4 pa)

Do1,Bs1,RB1 = puias oo’ (Ds,Bs,RB) RB

a. Resource Architecture Dependent Definitions.

Functional Architecture Definition: Rewlx)(:;fz Allocation
Ds1,Bs1,Cs1,As1 = Transfer2Blocks(Ds,Bs,Cs nilaons:
As 1 (Ds,Bs,Cs.As) Where: Transfer2Block
on: Robot.
Cs1,Asl=TransferBlock(Cs,As) Or
= Wh T fer2Blocks
Ds1,Bs1=TransferBlock(Ds,Bs) %;:.; 2r§25bo 2
Resource Architecture Definitions:
Res&‘i’:;el %ﬁ%g{fio“ Resource Definition with 2 Robots:
rRobot)r0 r4,r3 (2Robots) r2r1 r{Robot)0
/JTN /N /:Wm
r4(Robot)r2 r3(Robot)rl holding(Hand)r1
holdin d)rl
r(Block)holdingmm § r(Blockholding

b. Resource Architecture Independent Definitions.
Figure 7: Separation of Functional and Resource Architectures.

architecture. Two different resource allocation architectures are shown here which
have been defined based on the alternative resource architectures. The only system
that would change to switch from one robot to two robots or more would be the
resource allocation specification. In this example only the Where statement would
change. This model is an example of a technique that can be used to define a
system to inherently support its own run-time performance analysis.

G. Design Integrity of a System.

Properties of 001 systems can be used to evaluate the integrity of a system
design. The “goodness™ of “badness” of a system design can be evaluated based
upon attributes of the particular FMaps and TMaps used to define a system.
Attributes such as the number of layers in a TMap for a particular sysiem , the
degree of strong typing used in that TMap, the number of inputs and outputs
associated with each function in the FMap of the system, the size of the FMaps and

57

TMaps, degree of movement around a TMap to accomplish eacn functional task in
an FMap all come into consideration for such an evaluation. It becomes more clear
with each new development experience using 001 that a system can be defined from
the very beginning to inherently support its own analysis for design integrity.

IV. THE 001 TOOL SUITE: AN AUTOMATION OF THE
TECHNOLOGY

The purpose of the 001 tool suite is to ensure that the 001 technology is used
correctly. It has been defined with, implemented with and automatically generated
by itself. It is layered onto primitives which are implemented in a language for a
given native computer environment. A developer can use the tool suite either to
prototype a system or fully develop that system resulting in production quality
code.

The tool suite provides a menu system interface for communicating with users
and an editor for defining FMaps and TMaps and their integration in either graphical
or in textwal form (Figure 8). The capability exists for a user to define his own
libraries with a Road Map (RMap) hierarchy that provides an overview (and index)
of the library of FMaps, defined structures and TMaps.

At any point during the definition of a model, it may be submitted to the
Analyzer which automatically determines from examining the definitions of FMaps,
TMaps and user defined structures whether objects are used in a consistent and
logically correct manner. The Analyzer ensures that the rules for using the
mechanisms described above are followed correctly. As a result, all interface system
errors (the majority of the errors which are normally found during testing in a

Figure 8: The Definition and Development Process with the 001
Tool Suite.

58

conventional development) are eliminated at the requirements/specification stage of
development instead of later during testing.

When a model has been decomposed to the level of objects designated as
primitive and it has been successfully analyzed, it can be handed to the Resource
Allocation Tools (RATs) which automatically generate source code from that model.
These RATS are generic in that they will interface with diverse language, operating
system and machine environments. The Type RAT generates a system of object
type templates for a particular application domain from a type hierarchy. The
Functional RAT generates source code from the integration of type templates
generated by the Type RAT and the functional maps. The code generated by the
Functional RAT is automatically connected to the generated type primitives and
previously existing function and type primitives in the core library, as well as, if
desired, libraries developed from some other environment. The generated code can
be compiled and executed on the machine where the tool suite resides (the tool suite
currently resides within the VAX/VMS based environment); or, it can be ported to
other machines for subsequent compilation and execution. User-tailored documents,
with selected portions of a system definition, implementation, description and
projections (e.g., parallel patterns, decision trees and priority maps) can also be
automatically generated by the RAT.

With the use of the tool suite, a development process is automated within each
phase and between phases except at the very beginning of the life cycle where the
user inputs his thoughts and at the end of the development process when the
developer tests the results of the user’s ideas. The order of development is efficient,
since phases begin as soon as possible and many phases can proceed in parallel (e.g.
analysis for errors begins before implementation). Only one semantics language is
used throughout development. Each development phase is implementation
independent. A system can be automatically "RATted" to various alternative
implementations such as selected language, documentation, projection and computer
environments without changing its original definition. The 001 suite takes
advantage of the fact that a 001 system is defined from the very beginning to
inherently maximize the potential for its own awomation.

V. RESULTS

Several systems have been developed with 001, including those which reside
within manufacturing, aerospace, software tool development, data base
management, process control and simulation environments. The definition of these
systems began either with our defining the original requirements or with
requirements provided to us from others in various forms. They have varied from
one extreme of interviewing the user to obtain the requirements to the other of
receiving written requirements which were far too detailed. Written requirements
were also provided to us in English, 2167A format or in terms of other
requirements/specification languages. We have analyzed our results on an ongoing
basis in order to understand more fully the impact that properties of a system's
definition have on the productivity in its development.

59

A. Analysis of Recent Systems Developed with 001

Some of our most recent experiences where we analyzed systems, with respect to
productivity, include the development of the DETEC, OTD and Executor
systems[3,4].

1) The Defensive Technology Evaluation Code (DETEC) Demonstration
System: On this project a discrete event simulator for simulating real world object
interactions (e.g., battle managers, sensors and weapons), was defined and developed
for Los Alamos National Labs as an asynchronous, event-driven real-time
multiprocessing environment [3]. The first effort on this project was spent
developing approximately half of the system to an executable design level to
demonstrate prototyping at a high level. The second effort on this project was
spent in developing the other half the system to its lowest levels to demonstrate the
complete generation of a production ready system. Figure 9 summarizes the
productivity results on this project. The productivity was lower for the first effort
than for the second since the process of understanding the requirements for the entire
system took place in the first effort. The productivity in developing the DETEC
system with 001 varied from 14:1 to 48:1 when comparing it to conventional C
system developments (as measured in [5]) starting with a basic compiler, linker, and
standard run-time libraries to work with (Basis 1); but we determined that if only C
experts with access to a specialized reusable library equivalent to the core library of
001 were to develop this same system then the productivity could have varied from
2:1 10 8:1 (Basis 2).

2) The Object Tracking and Designation (OTD) Project: The intent of this
project was to demonstrate the effectiveness of 001 as a development environment
for OTD related systems within SDI [4). This system performs track initiation
updates, discrimination and prediction computations based on sensor data and
navigation information. The OTD effort was a ten man week effort starting with

Processing Controller

Total C Source s
001-Generated 29 0001 253000

Actual 001
Life Cycle (man-months)

Original Spec to Final Code

Estimated Conventional
Life Cycle (man-months)

Ori Spec to Final Code,
Baﬁal pee

Ori, Spec to Final Code,

Basﬁ';ﬂ pec 17 22

Productivity Gains
Basis 1

Basis 2

Figure 8: DETEC Demonstration System Productivity Statistics.

60

learning the requirements and ending with a round of performance testing*. The
system developed with 001 1s comparable to a 25,5007 statement system in C
source lines developed in a highly structured and modular conventional development
environment or a 15,0005 statement system in C source lines being produced by
very experienced C experts with a generic reusable library equivalent to that of 001.

3) The Executor Prototype System: This system was developed (with a
preliminary round of tests) using 001 [4]. It provides the ability to observe the real
time behavior of a 001 system. The Executor Prototype system is approximately
one half the size of the OTD system. Once the requirements were defined for this
system, this system was developed and tested with two man weeks of effort. It
generated approximately 13,000 lines of C code from the 001 model. The Executor
interfaces with other portions of the 001 tool suite to complete its functions; it
therefore is a larger and more complex system than the size of the set of new
models developed would suggest. It is our opinion that the productivity in this
case, from the completion of the requirements definition throughout development,
was even higher than the productivity for OTD largely due to the fact that the
requirements for the Executor were well understood by the developer when he began
to develop his system.

B. Next Step

Future enhancements of the tool suite will further take advantage of the properties
of 001 defined systems. For example, the tool suite is being enhanced to further
narrow the possibility of errors in the user intent domain, i.e., in the “remaining
10% to 25%" category. An architecture independent operating system (AIOS) [4] is
now being developed which will have the capability to understand 001 systems and
use this knowledge to support automatically the integration of all of the
architectures in a complete system engineering environment. The inherent parallel
pattems of the 001 defined requirements in both functional and resource architectures
allow for automated capabilities that were not thought to be possible before. The
AIOS will be used to align dependencies and independencies in the functional
architecture with those in its associated resource architectures. It will then
automatically find best case parallelisms and automatically allocate the functional
architecture to the best case resource architectures found. In one sense, the system
design engineer who performs run-time performance analysis (such as one who
compares the results of an algorithm on one hardware distributed architecture with
the results of that same algorithm on another architecture) is a human AIOS. The
AIOS will automate these tasks of the design engineer which are manual today.

VI: SUMMARY

Our experience has shown that the productivity in d-veloping a particular system
increases to the degree that Development Before the Fact properties exist and are
capitalized on in that system. A Development Before the Fact system is an

* Since 001 interface errors are found before implementation, it means that approximately 75% to 90% of the
“testing” of the 001-defined and developed OTD system was completed before implementation.

® This figure was obtained by counting the number of C lines of code automatically gencrated by 001 and reducing it
by a factor of approximately forty to sixty percent 10 acoount for e typical programmer’s stylistic preferences and
removal of comments. (It should be noted that the executables of a 001 developed system are normally smaller than
the executables for a conventionally developed system of the same functionally.)

61

intelligent system in that it contains built-in propertics to provide itself the best
opportunities that are available for its own decveclopment. It provides the
opportunity to begin its own development tasks as soon as possible and to check
as you go throughout its own development process. It is an independent system in
that it is not locked into obsolescence.

The 001 technology directly addresses the issues of Development Before the Fact
systems. With 001, integration happens early with the use of TMaps and FMaps;
errors are eliminated early when, for example, the primitive structures are ultimately
used to eliminate interface errors); flexibility and the ability to handle the
unpredictable are issues that are dealt with early since system definitions based on
the three primitive structures have properties of single-reference and single
assignment, ensuring traceability and safe reconfiguration; preparing for distributed
environments happens early, with explicit delineation of independencies,
dependencies and decision making; reusability happens early with the use of
mechanisms such as defined structures and parameterized types; automation
happens early , since TMaps, FMaps and their associated instantiations support
automated tools with sufficient and necessary information to understand formally
both a system and its definition; run-time performance analysis happens early with
the use of techniques which allow a clear separation of architectures as well as an
automation which can interpret the meanings and applicability of these architectures
and the relationships between them; and design integrity is considered early with the
use of the TMaps and FMaps to facilitate the process of understanding the
relationships between a system and its implementations and executions. Because of
these properties, a system can be developed with high quality, high reliability and
rapidly with a productivity that is in a category of its own. With this kind of
productivity there is no longer a need to differentiate between those techniques for
rapid prototyping and those for develeping pioduction ready systems.

REFERENCES

[1] M. Hamilton, "Zero-defect Software: the Elusive Goal,” IEEE Spectrum, vol.
23, no. 3, pp. 48-53, March, 1986.

(2] M. Hamilton, "Towards Ultra Reliable Medical Systems," Invited paper at
Proceedings, IEEE Symposium on Policy Issues in Information and
Communication Technologies in Medical Applications, Rockville,
Maryland, September 29, 1988.

{31 M. Hamilton and R.Hackler: "Prototyping: An Inherent Part of the Realization
of Ultra-Reliable Systems" in Final Report to University of California Los
Alamos National Laboratory Contract No. 4-X28-8698F-1: Defensive
Technology Evaluation Code (DETEC) Conceptual Model, 1988.

[4) Final Report: Object Tracking and Designation (OTD), Architecture
Independent Operating System (AIOS) and Run-Time Ensemble Benchmark
Environment Language (REBEL), prepared for Strategic Defense Initiative
Organization (SDIO) and Los Alamos National Laboratory, Los Alamos,
NM 87545, Order No. 9-XG9-F5131-1, December 1989.

{S] B. W. Boehm: Software Engineering Economics, Prentice-Hall, Englewood
Cliffs, N.J., 1981.

62

