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I. INTRODUCTION 
The need for rapid prototyping techniques arises because there are no conventional 

techniques for rapid development. With experience, it becomes clear that the reason 
conventional techniques cannot be used to deliver rapid systems is because they 
force the users and developers to concentrate on fixing wrong things up rather than 
on doing them right in the first place. Problems are cured rather than prevented. 
Every system is defined with a technology which expects a development to be based 
on “alchemy” and trial and error. When critical issues are dealt with too late or 
“after the fact”, both the quality of a system and the productivity in producing it 
become unacceptably low. The result is that system integrity is reduced at best. 
There is a compromise in functionality. Deadlines are missed. Time and dollars are 
wasted. The competitive edge is lost and opportunities are gone. 

If it were possible to develop software based systems with a marked improvement 
in productivity, there would not be a need to differentiate between methods for rapid 
prototyping and rapid development. To make this happen, however, it will be 
necessary to resolve what some believe to be the highest priority issues surrounding 
the conventional development process. Take, for example, integration. 
Integration happens too late into the development process. During the requirements 
process, data flow is defined using one method, state transitions another, dynamics 
another and data structure using still another method. Once these aspects of 
requirements are defined, there is no way to integrate them. Integration is left to the 
devices of a myriad of developers well into the development process. The resulting 
system is hard to understand, objects cannot be traced, and there is no 
correspondence to the real world. 

There are several other examples: Errors are eliminated too late. It is the 
accepted practice that a system be defined from the beginning to be ambiguous and 
incorrect. As a result, interfaces are incompatible and there is a propagation of 
mrs throughout development. The system and its development are out of control. 
Once again the developers inherit the problem. Similarly,flexibility and the 
ability to handle the unpredictable are issues that are dealt with too late. Systems 
are not defined at the beginning to handle changes or recover 6rom errors. As a 
result, porting is a new development for each new hardware, operating system or 
implementation language configuration; critical functionality is avoided for fear of 
the unknown, and maintenance is the most expensive part of the life cycle. 
Preparing for distributed environments happens too late. Systems are first defined 
and developed for a single processor environment. They are then re-implemented for 
a distributed environment. The result is at least one unnecessary development 
process of the system. Reuability happens too late. There are no properties in 
system definitions to help find, create and use commonality. The result is that 

46 
TH0380-6/91/0000/0046$01 .OO 0 1991 IEEE 

1 



redundancy is a way of life. Errors propagate accordingly. Automation happens 
too lute. A definition is given to developers to turn manually into code. As a 
result, new errors are created and a process that could have been mechanized is 
performed over and over again. Run-lime performance analysis (the process 
whereby decisions are made between algorithms or between architectures) fakes 
place too lute. Insufficient information is used to define system performance. A 
system is defined without consideration of how to separate a system from the 
environment in which it operates. The result is that design and implementation 
decisions depend on analysis of after the fact and ad hoc implementation results. 
Design integrity is considered too late. More often than not, a system design is 
based on short term considerations. As a result, development is driven in the 
direction of fai)ure. 

11. THE SOLUTION 
The solution to the problems discussed above is an approach which expects each 

development to be based on predictive discipline and an integrated system science. 
An example is a Development Before the Fact Approach which dictates that each 
system be defined with properties in its definition which support its own 
development throughout its life cycle. With such an approach, many of the tasks 
associated with the traditional sequential "waterfall', development process could be 
performed in parallel. A system would inherently integrate and make understandable 
its own real world definitions; maximize its own reliability and predictability and 
its own flexibility to change and the unpredictable; capitalize on its own 
parallelism; maximize the potential for its own reuse and automation; support its 
own run-time performance analysis and the ability to understand the integrity of its 
own design principles. Because of these properties systems would be developed 
with built-in quality and built-in productivity assurance. The result would be 
unprecedented productivity in a system's development. 

A language for this approach would have the capability to define any aspect of 
any system, including its functional architectures, resource architectures and 
resource allocation architectures throughout all of its levels and layers of definition.' 
Such a language can always be considered a design language, since design is a 
relative term. One person's design phase is another person's implementation phase. 
One person designs requirements. Another designs specifications. Still another 
designs code. If this language is truly successful in one phase as a design language, 
it should be successful in any phase This language would have mechanisms to 
define mechanisms for defining systems. Although the care language is generic, 
the user "language", resulting from the use of this mechanism definition aspect for 
a particular user, can be application specific, since the language is semantics- 
depndent but syntax- independent. The use of the collective set of mechanisms, so 
defined, defines each object with respect to its interrelationships to other objects for 
a given system. As such, using this language to define a system assures that the 
system will be object-oriented throughout its development, starting at the very 
beginning of its requirements phase. Every system defined with the use of this 
language would have built-in properties for supporting its own development. 
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The steps for building a Development Before the Fact system would be as 
follows. First, a model’ is defmed with h e  language for defining a system with 
built-in development properties. Next, the model is automatically analyzed to 
ensure that i t  was defined properly. A software implementation is then 
automatically generated consistent with the model. The resulting system is 
executed. This step is followed by building the real system. If the real system is 
software, this last step may not be necessary, since a final evolution of the software 
developed to simulate the model could become the real system. 

We will discuss next a technology, 001, which embodies many aspects of this 
approach in terms of its abilities to approach a solution for each of the problems 
discussed above. The reason 001 lends itself to the rapid prototyping of a system is 
that it has been designed, developed and used for the rapid development of systems. 

111. 001: A DEVELOPMENT B E F O R E  T H E  FACT 
APPROACH 

001 had its beginnings at the time of APOLLO 11 when Hamilton and her staff 
analyzed the on-board flight software in order to find a way to minimize errors. The 
result was a theory for defining systems free of interface errors. The first 
implementation of this theory was a technology which concentrated on defining and 
developing reliable systems in terms of functional hierarchies [l]. The technology 
has since evolved into an integrated hierarchical functional and object oriented 
network technique based upon a unique concept of control [2,3]. Every system 
defied and developed with 001 and its associated automated tool suite has properties 
of Development Before the Fact. The 001 tool suite has been defined and generated 
with itself. 

A. Modeling Environment 
The 001 modeling environment makes the assumption that reliable systems are 

defined in terms of reliable systems. Only reliable systems are used as building 
blocks and only reliable systems are used as mechanisms to integrate these systems. 
The new system becomes a reliable system for building other systems. The 
building blocks (Figure 1) include types of objects; functions whose inputs and 
outputs are members of these types; structures which relate a parent type’ to its 
children types and a parent function to its children functions; r e l d n s  which link 
types to types and construints which define the external boundaries within which a 
system may reside. 

Every model is defined in terms of functional hierarchies (FMaps) and type 
hierarchies (”Maps). All model viewpoints can be obtained h m  FMaps and 
TMaps including data flow, control flow, state transitions, data structure and 
dynamics. On an FMap there is a function at each node. For example, the 
function, drive the truck, could be decomposed into and control its children 
functions, turn on engine and turn wheels ; turn wheels could have children, turn 
wheels left and turn wheels.right. On a TMap there is a type at each node. For 
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Functional Map ( m a p )  me Map (TMap) 

Figure 1 : Reliable Buiidlng Blocks 

example, type truck could be decomposed into and control its children 
types,wheels and engine. A higher level function is defined on an FMap in terms 
of its relationships to lower level functions. A higher level type is defined on a 
TMap in terms of its relationships to lower level types. For each model, F M q s  
are inherently integrated with TMaps. Each function on an FMap has one or more. 
objects as its input and one or more objects as its output. FMaps are used to define, 
integrate, and control the transformations of objects 6om one state to another state 
(e.g., a buck with a broken wheel to a truck with a fixed wheel). Each object 
resides in an object hierarchy (OMap) and is a member of a type fiom a TMap. The 
bottom nodes on an FMap contain primitive operations on types which are defined 
in the TMap. The bottom nodes on a TMap contain primitive types. When a 
system has all of its object values plugged in for a particular performance pass (i.e., 
it is executing) it exists in the form of an execution hierarchy @Map). With these 
hierarchies, all system viewpoints are integrated. A system is defined from the very 
beginning to inherently integrate and McLke understandable its own real world 
definitions. 

B. The Primitive Control Strucwes 
001 FMaps and TMaps are ultimately defined in terms of three primitive control 

structutes. Structure decompositions overlay the abstract concept of control onto a 
network of primitive nodes where each node has input and output interconnections 
to other nodes. A formal set of d e s  is associated with each primitive structux~. 
The three primitive structures m: the Join(J) for d e f ~ g  dependent relationships, 
the Include(I) for defining independent relationships and the Or(0) for defining 
decision-making relationships (Figure 2). With the use of the primitive structures 
interface erron are %moved" before the fact by preventing them in the frrst place. 
Interface enon include data flow, priority and timing mrs throughout a system 
definition to a very fine grained level. It has been the experience of several that 
interface errors make up approximately 75% to 90% of the mrs that are found after 
implementation with a conventional technique. The use of the primitive structures 
supports a system to be defined from the very beginning to inherently maximize its 
own reliability and predictability. 
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I) Example of the use of [he 
primitive control structures. A use of 
the primitive structures is shown in 
the definition of the FMap for system 
IndependentRobots, which defines a 
system of two robots synchronized to 
work in parallel (Figure 3a). In 
IndependentRobots, the top function is 
decomposed into offspring functions 
Finish and Continue. It receives 
input, RobotBO and RobotAO, and 
produces output, RobotB and RobotA. 
The Or relationship between 
IndependenrRobots and its offspring is 
one of making a decision. The left 
child of an Or is chosen when the 
result of a partition function is True. 
The right child is chosen when it is 
False. In this example, either Finish 
or Continue will be performed. The 
decision depends on RobotBO and 
RobotAO. If processing is to be 
discontinued, IsFinished will select 
Finish. If not, it will select 
Continue. Each of the offspring of 
IndependentRobots takes in the same 
input and produces the same output, 
since only one of the offspring will be 
performed for a given performance 
Pass. 

Continue is decomposed into 
functions, IndependentRobots and 
Process. Continue controls its 
offspring in a Join relationship where 
IndependentRobots depends on the 
output of Process as input. With a 
Join, a common dependency is realized 
by the fact that one offspring’s output 
(in this case, RobotBn and RobotAn) 
is another offspring’s input. 
IndependentRobots under Continue 
cannot complete its performance 
without Process since it depends on 
the output of Process to provide its 
input; once IndependentRobots is 
finished, it provides its output to its 
parent Continue. Since Turn and 
Move are controlled by Process as 

Fo r d F n d e  n t &t io nships 

Rules Governing Joinu): 
Inputs ‘ o r  t arc identical to inputs of 

Ou ub of parent identical to outputs 

Outputs of nght d 3 d  arc identical to 

right 0 spnng (including order). 

oZ& offspring (includiog Order). 

inputs of left offspring (including order). 

For in&pendent relationships 

Rules Governing IncluddI): 
A parent scuds all its inputa to its childm. 
CUdxrs send rI1 their outputs to their paxnt 
Order of mputs and ou.’p”u is maintained. 
Children do ad share 
Left Child Tocdveo t h e % ! ? s y $ s .  

Left Child sends the fmt outputs to parent. 
6lightChildnceiVCSthCnst.  

Right Child sends the mu. 

For altmtatizx relationships 
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Flgure 2: The Three Prlmltlve 
Control Structures. 
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Independent RobotB,RobotA = (RobotB0,RobtAO) - 
O:isFinished(Robo t B0,RobotAO) 

/ \ 
RobotB,RobotAiFmish(RobotBO,RobotAO) RobotB,RobotA&ntinue(RobotBO,RobotAO) 

RobtBn=Turn(RobotBO) RobotAn=Move(RobotAO) 

a. Control Flow Oriented Graphics 

RobotAO 
RobotBO 

RobotA, 
RobotB 
__3 

b. Controlled Data How Oriented Graphics 

Figure 3: Use of the Primltlve Structures In a Functional Hlerarchy. 

independent functions with an Include, each takes its own input from its parent. 
Thus, for example, Turn takes in its own input RobotBO directly from its parent 
and produces its own output RobotBn, giving it directly to its parent Process. 
Move, likewise, takes its own input directly from its parent and produces its own 
output. In this relationship between the parent and its offspring, the offspring do 
not communicate with each other. Notice in the use of each primitive structure that 
inputs are traceable down and/or across (in this example h m  the right child to the 
left child) a hierarchy and outputs are traceable acmss and/or up a hierarchy. 

IndependentRobots, a recursive function, controls continue which controls 
IndependenzRobors. Recursion in a map is simply a repetition of the map inside of 
itself; it is a shorthand notation for indicating that the lowest IndependentRobots in 
the hierarchy has the same definition as its ancestor; when instantiated, this 
defmition is plugged in at the leaf function and the control hierarchy is extended 
downwards during execution. 

Although the Independed?obots example is shown in terms of a formal graphics 
tree format which emphasizes control flow, 001 does not dictate a particular 
syntactic form. It can be defined in some other graphics form, such as controlled 
state diagrams or controlled data flow diagrams (see, for example, a definition of the 
same system which emphasizes controlled data flow, in Figure 3b). It can also be 
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defined in kxtual form, such as in an algebr,Jc or natural language. Any syntax C a n  
be used as long as the semantic rules of (.I-.: technology are adhered to. In all these 
forms the same information is presented, out that which is highlighted varies. 

2 .  Real-time distributed properties of the primitive control structures. 
Although the primitive control structures were derived from a theory which was 
intended for defining systems to be free of interface errors, we discovered later that a 
hierarchy defined with the primitive control structures also results in properties for 
supporting real-time parallel environments. Each 001 system is event interrupt 
driven based on its functional architecture relationships and demand driven based on 
its m w c e  architecture relationships. An object is therefore always both demand 
driven and event driven at the Same time. Primitive functions are available for 
activation when all of their input events are available. An abstract function has a 
lifetime that contains the lifetimes of its immediate children. 

Each function in a hierarchy has a unique priority; the existence of an event can 
cause a system to automatically reconfigure and execute a higher priority function. 
If, in the use of the IncZude structure, the left offspring always has a higher priority 
than the right offspring in system IndependentRobots, both offspring can 
independently begin when each of their inputs becomes available if there are two 
processors. If one were to simulate the behavior of two robots, failure of Turn's 
processor forces an interrupt of Move's processor if Move is processing; Turn can 
starve Move of its processor resources; if Move is not processing, then if 
RobotAO becomes available, Move must wait until Turn is finished processing. 
Given one processor, if neithex offspring has been initiated, Turn can initiate when 
RobofBO becomes available or Move can initiate when RobotAO becomes 
available; if both arrive simultaneously, Turn initiates before Move. Concurrent 
processing can also take place within a Join structure when more than one input is 
being processed. In this example, the decision function IndependentRobots uses the 
function IsFinished to decide whether to Finish or Cona'nue. Since IsFinished 
needs both its inputs to execute, the decision is blocked until both inputs are 
available. 

C. Reusability with DefZned Structures 
Any system could be defined completely in terms of only primitive structures, 

but there is often a desire to use less primitive structures to accelerate the pn>cess of 
defining and understanding a system. The degree to which a system has symmeby 
or asymmetry determines the amount of reusable patterns that can be derived in 
terms of structures. Non-primitive structures can be defined in terms of the 
primitive structures or in terms of other non-primitive structures. Coinclude is an 
example of a system hierarchy pattem which happens o h  when using primitive 
structures (Figure 4a). Its FMap was d e f d  with primitive structures, Include and 
Join. Within the Coinclude pattern, A and B are the only leaf node functions that 
change. The Coinclude pattem can be defined as a non-primitive structure in terms 
of more primitive structures with the use of the concept of &fined structures. This 
concept was created for defining reusable patterns. Included with each structure 
definition is the definition of the syntax for its use (Figure 4b). Its use (Figure 4c) 
provides a "hidden repeat" of the entire system as defined, but explicitly shows only 
the elements which are subject to change (i.e.* functions A andB). The Coinclzufe 
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a. FMap 

me2:An 

b. Syntax b. Use 
al,bl = Process(a,b) 

a1 = A TaskA(a) b l  = TaskB(a,b) 

Figure 4: Co-Include Structure Deflnitlon. 

structure is used in a similar way to an Include structure except with the Coinclude 
the user has more flexibility with respect to repeated use of an object state, ordering 
of objects and selection of objects. Each defined structure has rules associated with 
it for its use just as with the primitive control structures. Rules for the non- 
primitives are derived from the rules of the primitives. With the use of 
mechanisms such as defined structures, a system is defined from the very beginning 
to inherently maximize the potential for its own rem.  

Async, shown in Figure 5 ,  is a real-time, communicating, concurrent, 
asynchronous structure. The Async system was defined (Figure Sa) with the 
primitive Or, Includeand Join structures and the Coinclude non-primitive structure. 
It cannot be further decomposed, since each of its lowest level functions is either a 
primitive function or a previously defined type (see Idcntify2:Any and Cfonel :Any 
under End, each of which is a primitive operation on any type), recursive (see 
Async uncia DoMOre), or a variable function for a defined structure (see A and B 
underprocess). If a leaf node function does not fall into any of these categories, it 
can be further decomposed or it can refer to an existing'operation in a library or an 
external operation from an outside environment. A use of Async is shown in 
Figure 5b. Whereas Turn and Move are independent functions in system, 
IndependentRobots, they are dependent, communicating, concurrent and 
asynchronous functions in system, DependentRobors. In this example the Turn 
function has been updated to incorporate a planning capability into part of 
RobotSO's function, T u " l a n ,  so that the two robots could work together to 
pexform a more complex task. Here one phase of the planning robot is coordinated 
with the next phase of the slave robot, RA2. 
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, . ................. .............,. .............................. . . ,'$& .&yac(t;aG;wp* m a p :  Y. _ . _  ..: : j k  . ,..,.~.~_...... .:::....... *'. ' 
OContinue?(IzO,bO) 

syntax 

......... . 

a. Definition of Async Structure. 

RB,RA CoordinateTasks(plansl,RBl,RAI) 
h 

I RA2 = Move(plans1,RAl) 

Async TasksDone 
\ 

NextStep,RB2 1 ?\lmAndPlan@larrslPBl) 

b. Use of Async Structuxe. 

Flgure 5: An Async Structure and Its Use. 

D.  Definition of Objects with Parameterized Types 
Reusability can also be used within a "Map model b y  using parameterized types. 

A parameterized type is a defmd structure which provides the mechanism to defme 
a "Map without its particular relations being explicitly defined. Each paramekrked 
type assumes its own set of possible relations for its parent and children types. 
TMap, RobotA, part of a simulator definition (Figure 6), is decomposed in firms of 
parameterized type, TupleOf, into its offspring types Ports, RotationTime, 
TurnRate, PutDownTime, PickUpTime and MfgObject; Ports in terms of Tuple05 
IOPorts in terms of OSetOf, and APorrldr in terms of OneOf. A Tupleof is a 
collection of a fixed number of possibly different types of objects; An OSetOf is a 
collection of a variable number of the same type of objects (in a linear order); a 
OneOf is a classification of object types of different types from which one type is 
selected. Each parameterized type has a set of primitive operations associated with 
it for its use. Abstract types decomposed with the same parameterized type on a 
TMap inherit the same primitive operations. FMap, StarringPosition Figure 6b) 
uses the A4oveto:Output:IOPort operation (see Figure Sa) (an instantiation of the 
Moveto.Chi1d:Parent operation of the OneOf parameterized type in Figure 6c) with 
abstract type, IOPort. Is:InputdOPort (an instantiation of the is:Child:Parent of 
Oneof) is used to determine which class of IOPort object is to be processed. 

A type may be non-primitive (e.g., Ports), primitive (e.g., PickUpTime as a 
natural number), a reference to a type outside of its parent domain (e.g., IOPorts), a 
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TMaps: RobotA 

IOpPro, APortIds 

a. Type Inheritance and Decomposition. 

On&. ParentChild. 
E i  tive rations: 

... 
c. Generic Parameterized m e .  
TF.. IOPOrt 

nmihve 0 rations: 
Ioport = G n p u t I ~ p o r t ~ a  
loport = .oU u t  IOportCIhPai); 
IOPOrt = CO y~OPoIt(IOP0rt); 
Nat = M~~e!&Inp~tlOPorMOPort); 
Nit  = Moveto:& utIOPoNOPort); 
Boolean = is:hpu8oPortCroPort); 
Boolean = k:OutputlOPort(IOP~d; 
... 

d. A OneOf Abstract Type Instance. 

I IO& Moveto:IOPorts(rIOPd 
~brt = P o s i t i o n 0  

u t  IOPOrttIOP) 

start = Moveto:InputIOPort(IOIOD 

-":p start 1 = M o v e t o ~ u t p u t I O P ~ O ~  

b. Functional Specification: 
Flgure 6: Excerpts of a Slmulatlon lmplementatlon of Primitlvo 

Operation: RobotA L. Rotate:RobotA(APortld,RobotA). 

reference to a type which is defined ekwhere but is still part of its parent's domain 
or recursive. Each parent on a TMap and its children are used as parameters to a 
parameterized type that is used to decompose that parent into its children. IOPort 
therefore, inherits all of the operations of OneW. 

Copy (Figure 6c), a primitive operation associated with all parameterized types, 
is a universal primitive operation. The universal primitive operations are used for 
controlling objects and object states. They create, destroy, copy, refmce,  move, 
access a value, detect and fecover from errors and access the type of an object. They 
provide an easy way to manipulate and think about different types of objects. With 
the universal primitive operations, building systems can be accomplished in a more 
uniform manner. 

The TMap properties ensure the proper use of a TMap by an FMap. A TMap has 
a corresponding set of control properties for controlling spatial relationships 
between objects. One cannot, for example, put an object into an object structure 
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where an object already exists (one cannot put a wheel on a truck where a wheel 
already exists); conversely, one cannot remove an object from a structure where 
there is no object; a reference to the state of an object cannot be modified if there are 
other references to that state in the future; reject values exist in all types, allowing 
the €Map user to recover from failures if they are encountered. 

E.  Constraint Specification and Analysis 
Constraints can be defined for both FMaps and TMaps. The meta-language 

properties of 001 can be used to define global and local constraints. If we place a 
constraint on the definition of a function (e.g., Where F takes beween 2 and 5 
seconds), then this constraint will influence all other functions that use this 
definition. Such a constraint is global with respect to the uses of the original 
function. Global constraints of a definition may be further constrained by local 
constraints placed in the context of the definition which uses the original function 
definition (for example, where function B uses F Where F takes 3 seconds). 
Function F could have a default constraint which holds for all uses such as Where 
DefauZt:3 secs. If however, B is defined to take 2 seconds , then B overrides F. The 
validity of constraints and their interaction with other constraints can be analyzed by 
either static or dynamic means. The 001 property of being able to trace an object 
throughout a definition supports this type of analysis. This property provides the 
ability to collect information on an object as it  transitions from function to 
function. As a result, one can determine both the direct and indirect effects of 
functional interactions of constraints. 

F.  Resource Architecture and Resource Allocation Definitions and 
Their Relationship to Run-Time Perfomnce Analysis. 

Having a technology is one thing. Using it most effectively is another. Take, 
for example the process of creating a complete system definition. There are many 
ways to define a system. Figure 7 shows three different definitions for system 
TrMgcer2BloCks. The fmt two definitions are architecture dependent. The third one 
is not. The first system Trun.$er2Blocks implicitly assumes 1 Robot as its 
resource. If more robots become available, the functional architecture with it's 
implicit resource mhitecture and resource allocation architectures would have to be 
changed to take advantage of its new r e s o m .  Such is the case with the second 
model which was defined to implement the system with 2 Robots. It will not work 
with one robot or any set of robots greater than two. In both the first and second 
models, a change from one architecture version of the system to another affects the 
input and output list of every function. There is also a*structural difference in the 
FMaps for the two implicit resource allocations of the first two models. One has a 
CC control structure and the other has a 1  control structure. 

The third system model provides a solution that is more flexible to changing 
requirements than the fmt and second models, since changes made to the third 
model based on changing user needs do not affect other architecture models. The 
functional architecture definition can remain the same for any resource architecture. 
The altemate resource architecture models can also remain unchanged to perform the 
user's requirements. A resource allocation architecture definition defines the way in 
which the resources of the resource architecture are applied to the functional 
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Ih1,Bsl,RB1,Csl,Asl,RAl= Eansfer2Blodcs(Ds,Bs,RB,GAs,RA) 2 Robot Resouroe Allocation: 

with 1 Robok 
r4j3 (2Robots) r2,rl 

&(Rht )r2  r3(Robot)rl 

a. R e s o m  Axhitedure Dependent Definitions. 

Funchi"d&iikcfum M n i h b n -  R.cs~urra AlZxnfim , DqiniEms 

on: Robot 
Where: ?fansfer2Block 

or 
Where Transfer2Blodcs 

on: 2Robots. 
Dsl,Bsl=?tansferBld(Ds,k) 

architecture. Two different resource allocation architectures are shown here which 
have been defined based on the alternative r e s o w  architectures. Tbe only system 
that would change to switch from one robot to two robots or mcm would be the 
resource allocation specification. In this example only the Where statement would 
change. This model is an example of a technique that can be used to define a 
system to inherently support its own run-timeperformance analysis. 

G. Design Integrity of a System. 
Properties of 001 systems can be used to evaluate the integrity of a system 

design. The "goodness" of "badness" of a system design can be evaluated based 
upon attributes of the particular FMaps and TMaps used to define a system. 
Attributes such as the number of layers in a TMap for a particular sysem , the 
degree of strong typing used in that M a p ,  the number of inputs and outputs 
a~ssociatsd with each function in the FMap of the system, the size of the FMaps and 
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TMaps, degree of movement around a T a p  to accomplish eacu functional task in 
an FMap all come into consideration for such an evaluation. It becomes more C l W  
with each new development experience using 001 that a system can be defined from 
the very beginning to inherently support its own analysis for dei& integrity. 

IV. THE 001 TOOL SUITE: AN AUTOMATION OF THE 
TECHNOLOGY 

The purpose of the 001 tool suite is to ensure that the 001 technology is used 
~0r re~ t . l~ .  It has been defined with, implemented with and automatically generated 
by itself. It is layered onto primitives which are implemented in a language for a 
given native computer environment. A developer can use the tool suite either to 
prototype a system or fully develop that system resulting in production quality 
d e .  

The tool suite provides a menu system interface for communicating with users 
and an editor for defining FMaps and TMaps and their integration in either graphical 
or in textual form (Figure 8). The capability exists for a user to define his own 
libraries with a Road Map (RMap) hierarchy that provides an overview (and index) 
of the library of FMaps, defined structures and "Maps. 

At any point during the definition of a model, it may be submitted to the 
Analyzer which automatically determines from examining the definitions of FMaps, 
TMaps and user defined structures whether objects are used in a consistent and 
logically correct manner. The Analyzer ensures that the rules for using the 
mechanisms described above are followed correctly. As a result, all interface system 
errors (the majority of the errors which are normally found during testing in a 
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Figure 8: The Definltlon and Development Process wlth the 001 
Tool S u b .  
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conventional development) are eliminated at the rcquirements/specification stage of 
development instead of later during testing. 

When a model has been decomposed to the level of objects designated as 
primitive and it has been successfully analyzed, it can be handed to the Resource 
AIlocarion Tools (RATs) which automatically generate source code from that model. 
These RATs are generic in that they will interface with diverse language, operating 
system and machine environments. The Type RAT generates a system of object 
type templates for a particular application domain from a type hierarchy. The 
Functional RAT generates source code from the integration of type templates 
generated by the Type RAT and the functional maps. The code generated by the 
Functional RAT is automatically connected to the generated type primitives and 
previously existing function and type primitives in the core library, as well as, if 
desired, libraries developed from some other environment. The generated code can 
be compiled and executed on the machine where the tool suite resides (the tool suite 
currently resides within the VAX/VMS based environment); or, it can be ported to 
other machines for subsequent compilation and execution. User-tailored documents, 
with selected portions of a system definition, implementation, description and 
projections (e.g., parallel patterns, decision trees and priority maps) can also be 
automatically generated by the RAT. 

With the use of the tool suite, a development process is automated within each 
phase and between phases except at the very beginning of the life cycle where the 
user inputs his thoughts and at the end of the development process when the 
developer tests the results of the user's a. The order of development is efficient, 
since phases begin as soon as possible and many phases can proceed in parallel (e.g. 
analysis for errors begins before implementation). Only one semantics language is 
used throughout development. Each development phase is implementation 
independent. A system can be automatically "RATted" to various alternative 
implementations such as selected language, documentation, projection and computer 
environments without changing its original definition. The 001 suite takes 
advantage of the fact that a 001 system is defined from the very beginning to 
inherently maximize the potential for its own automation. 

V. RESULTS 
Several systems have been developed with 001, including those which reside 

within manufacturing, aerospace, software tool development, data base 
management, process control and simulation environments. The definition of these 
systems began either with our defining the original requirements or with 
requirements provided to us from others in various forms. They have varied from 
one extreme of interviewing the user to obtain the requirements to the other of 
receiving written requirements which were far too detailed Written requirements 
were also provided to us in English, 2167A format or in terms of other 
requirements/pification languages. We have analyzed our results on an ongoing 
basis in order to understand more fully the impact that properties of a system's 
definition have on the productivity in its development. 
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A. Analysis of Recent Systems Developed with 001 
Some of our most recent experiences where we analyzed systems, with respect to 

productivity, include the development of the DETEC, OTD and Executor 
systems[3,4]. 

I) The Defensive Technology Evaluation Code (DETEC) Demonstration 
System: On this project a discrete event simulator for simulating real world object 
interactions (e.g.. battle managers, Sensors and weapons), was defined and developed 
for Los Alamos National Labs as an asynchronous, event-driven real-time 
multiprocessing environment [3]. The first effort on this project was spent 
developing approximately half of the system to an executable design level to 
demonstrate prototyping at a high level. The second effort on this project was 
spent in developing the other half the system to its lowest levels to demonstrate the 
complete generation of a production ready system. Figure 9 summarizes the 
productivity results on this project. The productivity was lower for the first effort 
than for the second since the process of understanding the requirements for the entire 
system took place in the first effort The productivity in developing the DETEC 
system with 001 varied from 14:l to 48:l when comparing it to conventional C 
system developments (as measured in [5]) starting with a basic compiler, linker, and 
standard run-time libraries to work with (Basis 1); but we determined that if only C 
experts with access to a specialized reusable library equivalent to the core library of 
001 were to develop this same system then the productivity could have varied from 
2:l to 8:l (Basis 2). 

2)  The Object Tracking and Desigwion (OTD) Project: The intent of this 
project was to demonstrate the effectiveness of 001 as a development environment 
for OTD related systems within SDI [4]. This system performs track initiation 
updates, discrimination and prediction computations based on sensor data and 
navigation information. The OTD effort was a ten man week effort starting with 
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Figure 9: DETEC Demonstration System Productlvlty Statlstlcs. 
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learning the requirements and ending with a round of performance testing'. The 
system dcveloped with 001 is comparable to a 25,500' stalement system in c 
s o m  lines developed in a highly structured and modular conventional development 
environment or a 15,00@ statement system in C source lines being produced by 
very experienced C experts with a generic reusable library equivalent to that of 001. 

3 )  The Executor Prototype System: This system was developed (with a 
preliminary round of tests) using 001 [4]. It provides the ability to observe the real 
time behavior of a 001 system. The Executor Prototrde system is approximately 
one half the size of the OTD system. Once the requirements were defined for this 
system, this system was developed and tested with two man weeks of effort. It 
generated approximately 13,000 lines of C code from the 001 model. The Executor 
interfaces with other portions of the 001 tool suite to complete its functions; it 
therefore is a larger and more complex system than the size of the set of new 
models developed would suggest. It is our opinion that the productivity in this 
case, from the completion of the requirements definition throughout development, 
was even higher than the productivity for OTD largely due to the fact that the 
requirements for the Executor were well understood by the developer when he began 
to develop his system. 

B.  Next Step 
Future eiihancements of the tool suite will further take advantage of the properties 

of 001 defined systems. For example, the tool suite is being enhanced to further 
narrow the possibility of errors in the user intent domain, i.e., in the "remaining 
10% to 25%" category. An architecture independent operating system (AIOS) [4] is 
now being developed which will have the capability to understand 001 systems and 
use this knowledge to support automatically the integration of all of the 
architectures in a complete system engineering environment. The inherent parallel 
patterns of the 00 1 defmed requirements in both functional and resource architectures 
allow for automated capabilities that were not thought to be possible before. The 
AIOS will be used to align dependencies and independencies in the functional 
architecture with those in its associated resource architectures. It will then 
automahlly find best case parallelisms and automatically allocate the functional 
architecture to the best case nxource architectures found. In one sense, the system 
design engineer who performs run-time performance analysis (such as one who 
compares the results of an algorithm on one hard- distributed architecture with 
the results of that same algorithm on another architecture) is a human AIOS. The 
AIOS will automate these tasks of the design engineer which are manual today. 

VI: SUMMARY 
Our experience has shown that the productivity in clweloping a particular system 

i n c r m  to the degree that Development Before the Fact properties exist and are 
capitalized on in that system. A Development Before the Fact system is an 

~~~ ~ ' Sina 001 i n m f a a  c m  a n  found Won implanenution. it m u m  that appmrimarcly 75% to 90% of the 
%sting" of the 001 -defined and dcvelopdd OTD ~yrtan  vu complaed before implancnWiCm. 

' Thir f i p e  w u  obtained by counting the numbcr of C lina of code automatidy gencntcd by 001 and rcducing it 
by a factor of approrimitcly forty to s h y  pcnxnt to accouIIt for typical prognmmcr'r nylisuc prcfcrcnccs and 
nmovd of car"&. (It rbadd be notd that the cxtCIlL(Lb1cd of a 001 developed cyrrtm are normally smaller than 
the CXCCUUNQ for 1 convaitimdly developed rystan d the ume functiorully.) 
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hrelligenr system in that it contains built-in properties to provide itself the best 
opportunities that are available for its own development .  I t  providcs the 
opportunity to begin its own development tasks as soon as possible and to check 
as you go throughout its own development process. I t  is an independent system in 
that it is not locked into obsolescence. 

The 001 technology directly addresses the issues of Development Before the Fact 
systems. With 001, inregration happens early with the use of TMaps and FMaps; 
errors are eliminated early when, for example, the primitive structures are ultimately 
used to eliminate interface errors); flexibility and the ability to handle the 
unpredicrable are issues thas are dealt with early since system definitions based on 
the three primitive structures have properties of single-reference and single 
assignment, ensuring traceability and safe reconfiguration; preparing for distributed 
environments happens early, with explicit delineation of independencies, 
dependencies and decision making; reusability happens early with the use of 
mechanisms such as defined structures and parameterized types; automation 
happens early , since TMaps, M a p s  and their associated instantiations support 
automated tools with sufficient and necessary information to understand formally 
both a system and its definition; run-time performance analysis happens early with 
the use of techniques which allow a clear separation of architectures as well as an 
automation which can interpret the meanings and applicability of these architectures 
and the relationships between them; and design integrity is considered early with the 
use of the TMaps and FMags to facilitate the process of understanding the 
relationships between a system and its implementations and executions. Because of 
these properties, a system can be developed with high quality, high reliability and 
rapidly with a productivity that is in a category of its own. With this kind of 
productivity there is no longer a need to differentiate between those techniques for 
rapid prototyping and those for deve!cFkg piduction ready systems. 

REFERENCES 

[l] M. Hamilton, "Zero-defect Software: the Elusive Goal," EEE Spectrum, vol. 
23, no. 3, pp. 48-53, March, 1986. 

[2] M. Hamilton, "Towards Ultra Reliable Medical Systems," Invited paper at 
Proceedings, IEEE Symposium on Policy Issues in Information and 
Communication Technologies in Medical Applications, Rockville, 
Maryland, September 29,1988. 

131 M. Hamilton and R.Hackler: "Prototyping: An Inherent Part of the Realization 
of Ultra-Reliable Systems" in Final Report to University of California Los 
Alamos National Laboratory Contract No. 4-X28-8698F- 1: Defensive 
Technology Evaluation Code (DETEC) Conceptual Model, 1988. 

[4] Final Report: Object Tracking and Designation (OTD), Architecture 
Independent Operating System (AIOS) and Run-Time Ensemble Benchmark 
Environment Language (REBEL), prepared for Strategic Defense Initiative 
Organization (SDIO) and Los Alamos National Laboratory, Los Alamos, 
NM 87545, Order No. 9-XG9-F5 13 1- 1 ,  December 1989. 

[q B. W. Boehm: Software Engineering Economics, Prentice-Hall, Englewood 
Cliffs, N.J., 1981. 

62 


