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What the Errors

Tell Us

Margaret H. Hamilton, Hamilton Technologies

With a preventative paradigm, most errors
aren'’t allowed into a system in the first place,
just by the way the system is defined. With
such an approach, the more reliable the system,
the higher the productivity in its lifecycle.

IT WAS NOT quite the ’60s. No
school existed for learning how to
build software. You were on your
own. Courses, if any, were concerned
only with becoming familiar with a
set of available commands to tell the
computer what to do (sometimes pro-
vided by a computer’s manufacturer).
It was difficult to understand why
this and only this seemed to matter.
Just knowing a set of English words
would not demonstrate one’s abil-
ity to write a good novel. Experi-
ence with the programming language
needed on a particular project was in
great demand.

Little did we know that what
we were doing then would become
known years later as “software
engineering,” when we were in
the trenches building flight soft-

ware for the Apollo missions,! and

that software engineering would
be celebrated in this issue of IEEE
Software and at the 2018 Interna-
tional Conference on Software En-
gineering as having existed for at
least half a century.?

My first assignment was creating
weather prediction software in hexa-
decimal on the LGP-30, for MIT’s
Edward Lorenz. Understanding the
hardware’s relationship to the soft-
ware and how to use this knowledge
to increase the software’s perfor-
mance was a priority.

Errors were dreaded, because
debugging took forever. Setting up
longer runs overnight, and spending
more time up front (on the hexadeci-
mal code) and less time on testing
at the back end, helped. Still, more

needed to be done. The “solution™
instead of always having a new
paper tape of machine code (in bi-
nary) generated by the computer
from the hexadecimal program, the
breakthrough was realizing changes
could be made directly to the tape
by poking a hole in it with a pencil
to turn a 0 into a 1, or covering up
a hole with Scotch Tape to turn a 1
into a 0. But this approach (“hack-
ing”) could be error-prone.

Another project was the SAGE
(Semi-Automatic Ground Environ-
ment) air defense system at Lincoln
Laboratories, where we developed
software on the first AN/FSQ-7
computer, the XD-1, to search for
unfriendly aircraft. It was espe-
cially important not to make an
error because if you did, the com-
puter would tell everyone. The ma-
chine was huge. When it crashed, we
heard loud siren-like and foghorn-
like sounds throughout a very large
building. Operators and program-
mers would come running to find
out whose program crashed. Since it
belonged to the programmer stand-
ing in front of the console, it was no
secret who the guilty one was. The
location where the program halted
could be found in a foot-long regis-
ter on the console with its flashing
lights—the only information we had
to find out what caused the crash.
The next step: write the register’s
contents on a piece of paper.

Given what it took to find the
error, it was again reason to spend
more time up front on the code.
Keeping track of which program
caused which crash was a challenge.
My solution: take a Polaroid picture
of each programmer posing next to
his or her bug. The pictures became
more creative as time went on. We
all loved to listen to the sounds of
one program. One time a computer
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operator called at four in the morn-
ing and said, “Something terrible
happened; your program no lon-
ger sounds like a seashore.” I got in
the car and rushed to work. We had
found a new way to debug, using
sound. I began to find more ways to
understand what made a particular
error or a class of errors happen as
well as how to prevent it from hap-
pening in the future.

SAGE had its drama, especially when
it came to errors. But this was only
the beginning of what would come
next: the Apollo onboard flight soft-
ware project at MIT, under contract
to NASA. The challenge was unique:
build human-rated software, mean-
ing astronauts’ lives were at stake.
Not only did it have to work, it had
to work the first time. Not only did
the software itself have to be ultra-
reliable, it also needed to be able to
detect an error and recover from it in
real time. It did not disappoint.

Each mission had its drama, but
Apollo 11 was special. We had never
landed on the moon before. Every-
thing was going according to plan,
until something totally unexpected
happened. Just before the astronauts
were about to land, the onboard
Apollo Guidance Computer (AGC)
became overtaxed. The software’s
priority displays (Display Interface
Routines) of 1201 and 1202 alarms
interrupted the astronaut’s normal
mission displays, warning them of
an emergency, letting NASA’s Mis-
sion Control understand what was
happening and alerting the astro-
nauts to place the rendezvous radar
switch in the right position. The pri-
ority displays gave the astronauts a
go/no-go decision (to land or not to
land). It quickly became clear that

the software was not only inform-
ing everyone there was a hardware-
related problem but also compensat-
ing for it.> With minutes to spare,
the decision was made to land. The
rest is history. The Apollo 11 as-
tronauts became the first humans
to walk on the moon; our software
became the first software to run on
the moon. The software experience
(designing it, developing it, and
learning from it for future systems)
was at least as exciting as the events
surrounding the mission.

The task at hand: develop the
Command Module (CM) and Lunar
Module (LM) software for the AGC.
This included the systems software,
shared by and residing within both
the CM and the LM, and the flight
software’s “glue” that defined, inte-
grated, and managed the relation-
ships between and among mission
phases and routines. Updates to the
software were continuously being
submitted from hundreds of people
over all the releases for each mis-
sion. Every change, with its reason
for being documented, needed ap-
proval before being allowed into an
official version. Everything needed
to play together like a finely tuned
orchestra, making sure there were
no interface errors (data, timing,
and priority conflicts) in the soft-
ware and between the software
and the other systems involved (in-
cluding hardware, peopleware, and
missionware).

The flight software was designed
to be asynchronous so that higher-
priority jobs could interrupt lower-
priority jobs. This was accomplished
by the developers’ assigning a unique
priority to every process, ensur-
ing that all events in the software
would take place in the correct or-
der and at the right time relative to
everything else going on. Steps taken

earlier within the software to create
solutions within an asynchronous
environment became a basis for so-
lutions within a distributed environ-
ment, once it became apparent that
although only one process at a time
executed in a multiprogramming
environment, other processes in the
same system—sleeping or waiting—
existed in parallel with the executing
process.

With this as a backdrop, the pri-
ority displays were created, chang-
ing the human-machine interface
between the astronauts and the
software from synchronous to asyn-
chronous, where the flight software
and the astronauts became paral-
lel processes within a distributed
system-of-systems environment. Such
was the case with the systems-
software error-detection-and-recovery
programs. They included the system-
wide kill and recompute from a safe
place snapshot-and-rollback restart
capabilities and the priority displays
together with their human-in-the-
loop capabilities (such as that of be-
ing able to warn the astronauts and
replace their normal displays with
priority displays).

This would not
possible
system-of-systems (and teams) ap-

have been

without an integrated
proach and innovative contributions
made by other groups. The hard-
ware team at MIT changed their
hardware, and the mission-planning
team in Houston changed their as-
tronaut procedures. Both worked
closely with us to accommodate the
priority displays in both the CM and
the LM, for any emergency through-
out any mission. Mission Control
was prepared. They knew what to do
should the astronauts’ displays be in-
terrupted with priority displays.

In addition to the software devel-
oped by our team, “outside” code
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could be
groups to become part of the flight

submitted from other

software (e.g., from someone in the
navigation analysis group).
submitted to our team for approval,

Once

the code fell under our supervision.
It was then “owned by” and up-
dated by our team to become part
of, and integrated with, the rest of
the software. As such, it had to go
through the strict rules required for
all onboard flight software. This
ensured that all the flight software
modules and all aspects of these
modules were completely integrated
and that there would be no interface
errors within, between, and among
all modules, both during develop-
ment and in real time.

When answers did not exist, we
invented them. Dramatic events dic-
tated change. Requirements were
“thrown over the wall” from mis-
sion experts to software experts.
To those people who weren’t soft-
ware experts, software “magically”
appeared within the AGC, inte-
grated and ready to go. What be-
gan as mission-related requirements
for the software became more un-
derstood by everyone in the form
of the application-oriented parts
of the flight software that realized
the mission requirements. Mission
expertise moved on from mission
experts to software experts and vice
versa. Mission engineers and soft-
ware engineers necessarily became
interchangeable, as did their lifecycle
phases—suggesting that a system is
a system, no matter from which dis-
cipline things originated. From this
perspective, system and software de-
sign issues became one and the same.

Understanding the subtleties of
developing real-time asynchronous
flight software was left up to the
systems-software experts. Since
there was still no school for learning

such things, having this kind of re-
sponsibility necessitated our creating
and evolving methods, standards,
rules, tools, and processes for de-
signing and developing the software,
with a special emphasis on prevent-
ing errors. Although many errors
were found during the software’s
preflight phases, no onboard flight
software errors were known to have
occurred during flight on any Apollo
missions. An invaluable position
within the team was the Assembly
Control Supervisor (ACS), caretaker
of the code submitted for a particular
mission for the LM or the CM (e.g.,
one for Apollo 8’s CM, another for
Apollo 11’s LM). Each ACS used the
Augekugel (eyeball) method in his
designated area, looking for inter-
face errors and violations of cod-
ing rules, throughout all the official
flight software releases and their in-
terim updates.

Since it was not possible (certainly
not practical) to test the software by
flying actual missions, it was neces-
sary to test it with a mix of hardware
and digital simulations of every (and
all aspects of an) Apollo mission.
This

simulations (with real or simulated

included human-in-the-loop

human interaction) and variations of
real or simulated hardware and their
integration, making sure a complete
mission from start to finish would
behave exactly as expected.

One could not help but learn from
these experiences. With initial fund-
ing from NASA and the US Depart-
ment of Defense, we performed an
empirical study of the Apollo effort.
The subject of errors took on a life
of its own. Opportunities to make
errors were not lacking, not to men-
tion every kind possible. I had the

opportunity to have some responsi-
bility in the making of many of these
errors, without which we would not
have been able to learn as much as
we did. These errors sometimes oc-
curred with great drama and fan-
fare, and often with a large-enough
audience to never want such a thing
to happen again!

What we learned was full of sur-
prises. For want of a better term, the
process evolved into a “theory of er-
rors.” A general systems theory was
derived from the errors and what we
learned from them. This theory con-
tinues to evolve on the basis of the
lessons learned from Apollo and later
projects. From its axioms we derived a
set of allowable patterns that became
the basis for the Universal Systems
Language (USL) together with its au-
tomation* and preventative paradigm,
“development before the fact.”

Unlike with languages typically
used in traditional systems, instead
of telling the computer what to do,
the user defines all the system’s re-
lationships (the what). A formalism
for representing the mathematics of
systems, USL is based on the axioms
of control of the systems theory and
formal rules for their application.
Every system is defined in terms of
Function Maps (FMaps) and Type
Maps (TMaps).> FMaps define func-
tions and their relationships to other
functions; TMaps define types and
their relationships to other types.
FMaps
with TMaps. Figure 1 shows an ex-

are inherently integrated
ample of a system defined in terms of
FMaps and TMaps.

A USL system is defined from the
very beginning to maximize the po-
tential for its own reuse; reliable sys-
tems are defined in terms of reliable
systems. Three universal primitive
structures, derived from the axioms,
and nonprimitive structures, derived
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FMap Syntax: Function(Domain)=coDomain
RunRobot(R0,E0)CJ=R,E

Clone2(E0)=E1,E2
Exploration(E1,E2,R0)CJ=R,E

SeeDanger(E1)=E3,d
DangerOrExplore(E3,d,R0,E2)=R,E
{Interrupt}
Danger(E3,d,R0,E2)CJ2=R,E
Avoid(R0,d)=Rn
Identify1(E3,E2)=En
RejectOrNot(Rn, En)O=R E (A5 3], CO-RL ES
{is:Reject,Robot(Rn)}
True | Exit(Rn,En)I=R,E
Clonel(Rn)=R
Clonel(En)=E

not(True)|
RunRobot(Rn,En)=R,E

R,...Rn are Robots
E,...En are Environments
d,ev,effect are Stimuli

(E2)=E4,ev

React
(RO,ev)=R1,effect

ENV(E4,effect)=E5

TMap Syntax: Type(Domain;coDomain)
Robot(sense;effect))
/ motor(efforent;effect)

memory(sense;efforent)dlset

receptor(sense;to)O{Event(sense)}

executive(to;efforent)

not(danger) | r /)“;ANGER' o
danger| TreeOrNot(sense;to) ”der/
Thunder(sense;to) O{Event(sense)} ﬁ 7

tree | Tree(sense;to) not(tree)| @ i
HouseOrNot(sense;to)
Syntax

Robot senses its environment, ev (via ENV), Reacts
based on event memories and uses efferent
impulses to activate executive motor actions to
effect (via ENV) its environment. If no event
history is found, a new dlset memory relation is
added. Executive selects a potential motor action
response based on afferent impulse patterns in its 'map".

12505 |

SeeDanger interrupts Robot's ongoing exploration with d. If Robot, Rn, can Avoid d,
RunRobot is recursively restarted; or, Robot is terminated since it is a Reject.

?(i,s0)=s
{interrupt}

F2(s0)=sn  True| 12(i,s0)=s

Universal Mechanisms for FMaps and TMaps

Type: Any Constant: Reject
is:present(a;b) If a has avalue
Clonel(r;rl) then b=True
Clone2(r;r1,r2) r=ri=r2
Identify1(r1,r2;r)

2(r;s)O{P(r;s)}

not(value
1st?(r1;s1) 2nd?(r2;s2) value | 1st?(r;s) 2nd(?(r;5) s

Primitive Structures
?(r;s))

1st?(r;z) 2nd?(z;s)
?(r1,r2;s1,s2)l

dliset provides a reactive sensorimotor

Do F s
until i arrives memory map of Robot's history of
thendo I. interactions with its environment.

£ ¢ | memory map: reproduction of relations
* "' between events in the outside world.
Structure

2 . Syntax ?(from;s)diset
interrupt?(i,s0)co=s ytax:2(from;sjdise

{is:present(i)}

fromEI?(from;to) toEl?(to;s)

False| continue(i,s0)Cl=s

F?(s0)=sn
interrupt(i,sn)=s

isetoin

FIGURE 1. This robot exploration system is defined with the Function Map (FMap) RunRobot and the Type Map (TMap) Robot. FMaps
represent the dynamic world of actions (doing) by capturing functional, temporal, and priority characteristics. TMaps represent the
static world of objects (being) by capturing type, atemporal, and importance characteristics. Each map is defined in terms of the
universal primitive structures: Join (J) for dependencies, Include () for independencies, and Or (0) for alternatives. The robot explores
its environment, recording its experiences in a reactive sensorimotor memory map represented by a distributed independent set of

relations, using the TMap structure dlset.2

ultimately from the primitive struc-
tures, specify each map. Each primi-
tive function resides at an FMap leaf
node and corresponds to a primitive
operation of a TMap type. Primitive
types, each defined by a set of primi-
tive operations and axioms, reside
at TMap leaf nodes (defining the
system’s application domain). Each
primitive-type operation may be re-
alized by an FMap on a lower layer
of the system.

Correctness is accomplished by
the very way a system is defined, by
built-in language properties inher-
ent in USL’s grammar. A USL defi-
nition models both its application
(e.g., an avionics or a cognitive sys-
tem) and properties of control into
its own lifecycle. Mathematical ap-
proaches are often known to be dif-
ficult to understand and limited in
their use for nontrivial systems. Un-
like other formal methods, USL ex-
tends traditional mathematics (e.g.,
mathematical logic) with a unique
concept of control enabling it to
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support the definition and realiza-
tion of a system, no matter its kind
or size. The mathematical formalism
is hidden by language mechanisms,
derived in terms of that formalism,
that are semantics-dependent but
syntax-independent.

Properties of preventative systems
are especially important from the
perspective of a system’s real-time,
(event-driven),
distributed behavior. Such a system
inherently lends itself to being able
to detect and automatically recover

asynchronous and

from errors in real time. Whereas on
Apollo it was necessary for develop-
ers to explicitly schedule each pro-
cess in the flight software and assign
to it a unique priority, with USL this
is no longer necessary because pri-
ority is inherent in the grammar of
FMaps and TMaps. Functions (and
types) within a system are totally
ordered, since every function (and
type) has a unique priority.

Along the way, it became clear
that a system defined with USL has

properties that inherently support
its own development “before the
fact,” eliminating those things in-
cluding tasks, procedures, rules, and
tools that previously were necessary
but now become no longer needed,
such as analyzing the code by hand
to ensure it conforms to the system’s
specification and design, and assign-
ing unique priorities to (and schedul-
ing) processes manually. We continue
to discover new properties in USL-
defined systems. One day, we real-
ized that the root problem with tradi-
tional approaches is that they support
users in “fixing up wrong things after
the fact” rather than in “doing things
in the right way in the first place.”
With USL’s preventative paradigm,
instead of looking for more ways to
test for errors and continuing to test
for errors late into the lifecycle, the
majority of errors, including all in-
terface errors (at least 75% of and
the most subtle of all errors), are not
allowed into a system in the first
place, by the way it is defined.
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Testing for nonexistent errors

becomes an obsolete endeavor.

Whereas most errors are found
(if ever found) during the test-
ing phase in traditional develop-
ment, with USL, correct use of
the language prevents (“eliminates”)
errors “before-the-fact” in a system’s
definition and its derivatives (e.g.,
its software, since software is auto-
matically generated from its formal
definition, inheriting all the proper-
ties of the definition from which it
came). Instead of automation that
supports the lifecycle, the lifecycle
process itself can now be automated.
Integration and traceability within a
definition and from systems to soft-
ware are seamless.

USL’s automation hunts down er-
rors from the incorrect use of USL.
Much of the design and all the code
(and documentation) for a given
software system are automatically
generated, or commands could be
automatically generated for another
kind of resource (e.g., a robot). Be-
cause of USLl’s open architecture,
the automation can be configured
to generate one of a possible set of
implementations for a resource ar-
chitecture (the how) of choice (e.g.,
a language, a database package, or
the users’ own legacy code). When
an object type is changed, the status
of all its functional uses (impacted
by objects of that type) are demoted.
The FMaps are then automatically
reanalyzed by the analyzer, reestab-
lishing the status of that type’s uses.

Maintenance shares the same
benefits. The developer never needs
to change the code, since applica-
tion changes are made to the USL
definition—not to the code—and
target resource architecture changes
are made to the generator environ-
ment configuration—not to the code.
Only the changed part of the system

is regenerated and integrated with
the rest of the application. Again,
the system is automatically analyzed,
generated, compiled, linked, and ex-
ecuted without manual intervention.

any of the pressing soft-

ware issues that existed

in the earlier days still
exist today. From our own work, we
believe that this is largely because of
the traditional paradigm. It has been
around since the beginning and con-
tinues in force to this day.

Many well-known problems with
the traditional paradigm need not
exist with a preventative paradigm.
Much of what seems counterintui-
tive with the traditional approach
becomes intuitive with a preventa-
tive paradigm: the more reliable a
system, the higher the productivity
in its lifecycle. For each new prop-
erty discovered that, in essence,
comes along for the ride, there is the
realization of something no longer
needed as part of the system’s own
lifecycle. What works best for de-
veloping ultrareliable systems just
happens to work best for systems in
general, no matter the application.

Several kinds of systems have
been developed with USL, includ-
ing “the development process of a
system” as a system itself. Just like
the systems that are developed with
USL, USL’s automation is com-
pletely defined by itself (using USL),
and it automatically generates it-
self. Looking toward systems of
the future, university,%’ research,’
government,’ and commerciall®%!
organizations have conducted exper-
iments throughout USL’s evolution,
comparing its approach with tra-
ditional approaches within diverse
domains including formal meth-
ods,” object technologies and CASE

(computer-aided software engineer-
ing),'2 domain analysis,® and model-
driven development (e.g., UML,0:11
SysML,'9 and Cleanroom!!). These
experiments have gone from system
functional requirements through
operational validated code, each
refereed by third-party observers
or by the agency sponsoring the
competition.

USL has stood the test of time,
especially when medium to large-
scale systems are in the mix. In
every case, reliability and produc-
tivity have been considered to be of
highest importance.

The errors not only tell us how to
build systems without them but also
unexpectedly gave us a paradigm for
the future. Educating people how
to think and build systems in terms
of the paradigm becomes the next
challenge. @
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