
Preventative Software Systems

Margaret H. Hamilton

Hamilton Technologies, Inc.
17 Inman St., Cambridge, MA 02139

Voice: 617-492-0058; Fax: 617-492-1727

Abstract
Traditional software environments help ‘@x wrong things

up” instead of “doing them right in the first place”. Things
happen WO late i f at all. Quality is compromised. Dollars are
wasted.

Aprom’singparadigm isdevelopment before the fact where
a system’s properties control its own development. The goal is
todevelopasystemwithbuilt-inqualityandbuilt-inproductiv-
ity. Whereas the traditional approach is curative, develop-
ment before the fact ispreventative. Its formal language, both
function and object oriented, 1; ;he key.

Described herein is the technology and its automation, a
full life cycle systems engineering and software development
environment. Complete, fully production-ready, integrated
code can be automatically generated for any kind of software
system as well as be cor@guredfor the language and architec-
ture of choice. Also described is users’ experience in its
application to real world systems.

1: Introduction
Traditional system engineeaing and software development envi-

ronments help their users “fm wrong things up” or worm tasks
that should no longer be necessary instead of helping them “do
things right in the frst place”. Because critical issues are dealt with
@er thefact, true reuse is ignored. Quality and functionality are
compromised. Responding to today’s rapidly changing market is
not practical. Deadlines are missed. lime and dollars are wasted.
The competitive edge is lost.

Take, for example, defining requirements. Incompatible meth-
ods are used to capture even part of a definition (e.g., data flow and
timing). Once defined, there is no way to integrate the parts.
Methods available to them force designers to think this way, leading
to further problems. Integration of objects (object to object),
modules, phases, or application types is a challenge left to the
devices of a myriad of developers well into the develoment.

a disbibuted environment. Another unnecessary development.
Insufllcient information about a system’s run-time performance,
including concerning decisions to be made Ween algorithms or
architectures, is incorporated into a system definition. This results
in design decisions that depend on analysis of outputs from exmis-
ing ad hoc implementations and associated testing scenarios. It is
not known if a design is a good one until its implementation has
failed or succeeded.

Focus forreuseis lateintodevelopment duringthecodingphase.
Definitions lack properties to help find, create and make use of
commonality. Modelers are forced to use the same informal
methods for dividing a system into components natural for reuse.
Little incentive exists for reuse in today’s changing market if a
module is not able to be integrated, not portable or adaptable and it
is error prone. Redundancy is a way of life.

Automation, itself, is an inherently reusable process. If a
solution does not exist for reuse, it does not exist for automation.
Systems are defined with insu€ticient intelligence for automated
tools to use them as input. Too often, these tools concentrate on
supporting the manual process instead of doing the real work.
Definitions supported by automation aregiven to developers to turn
into code manually. A process that could have been mechanized
p~lcpr for reuse is performed manually over and over again. When
automation attempts to do thereal work, it is often incomplete across
application domains or even within a domain resulting in hcom-
pletecodesuchas shellccde. Anautomation for onepartof asystem
(e.g., graphics) needs to be manually integrated with an automation
for anotherpartof thesystem (e.g., scientifc algorithms). Thecode
generated is often inefficient and/or hard wired to a particular
architecture or language. Eveaywhere manual processes complete
unfinished automations, Most of the development process is
needlessly manual.

A promising solution to these problems is development before
thefact. Whereas the traditional approach is curative, this approach
is preventative.

compounded b i the use of &matched development prhucts.
System are actually encouraged by these methods to be defined as
a”lous* Interfaces are incompatible and errors propagate
throughout development. Again thedevelopers inherit theproblem.
The s y s m and its development are out of control.

development. Mainmance is risky andcostly. Adisaibuted system
isoftenfirsttargetedforasingleprocessorandthenredevelopdfor

2: D~~~~~~~~~~ before the fact
With development before the fact a system is defined with

properties An
emphasis is placed on defining things right the first time. From the
beginning, asystem integrates all of its own objects (and all aspects

capitalizes on its own parallelism; supports its own run-time
mance analysis; and maximizes the

“Uy control its own development.

Require“ts* On Promes, do not con- of these objwts) and the ~mbmations of functionality using these sider that the User Will change his mind. Porting involves new objects; its own reliability and flexibility to

for its own reuse and

410
0730-3157194 $04.00 0 1994 IEEE

automation; it is developedwith built-inquality and built-inproduc-
tivity.

2.1: Technology
The development before t h e f a technology includes a language,

an approach, and a process, all of which are based upon a formal
theory. Once understood, the characteristics of good design can be
reused by incorporating them into a language for defining any
system. This language is the key to development before thefact. It
has the capability to define any aspect of and about any system and
integrate it with any other aspect These aspects are directly related
to the real world. This same language can be used to define system
requirements, specifications, design, and detailed design for func-
tional, resource and resource allocation architectures throughout all
levels and layers of “seamless” definition, including hardware,
software and peopleware. It can be used to define systems for real
time or data base environments with diverse degrees of fidelity and
completeness. With this language, function-oriented parts of a
system are defmed to integrate with object-oriented parts; control
hieranhies are defined to integrate with networks of functions and
objects. Such a language is always considered a design language,
since design is relative; one person’s design phase is another
person’s implementation phase. Semanticsdependent but syntax-
independent, its mechanisms are used to define mechanisms for
defining systems. Although the core language is generic, the user
“language”, a by-product of a development, can be application
specific.

The first step in building a before thefact system is to manage
the system by configuring the process management environment.
The next is to define a model. The model is automatically analyzed,
statically and dynamically, to ensure that it was defined properly.
Managementmetria arecollectedandanalyzed. Afullyproduction
ready andfullyinte~~softwareimplementation,consistentwith
themodel, is then automatically generated by ageneric generator for
a selected target environment in the language and architecture of
choice. If the required environment has been configured, it is
selected directly; if not, the generator is configured for a new
environment before it is selected. The resulting system can then be
executed. It becomes operational after testing. Target changes are
made to the definition, not to the code. Target architecture changes
are made to the confqwation of the generator environment, not to
the code. Once a system has been developed, the system and the
p m s used to develop it are analyzed to understand how to
improve the next round of system development. The process
evolves before proceeding through another iteration of system
engineering and software development.

Development before the f i t is a function and object-oriented
approachbasedupnauniqueconceptofcontrol [ll, [2],[31. This
approach had its earlier b e , g i i with the Apollo space missions
when reseafch was performed for developing man-rated software.
This led to the finding that interface errors accounted for most errors
found in the flight software during fmal testing. They include data
flow, piority and timing errors at both the highest and lowest levels
of a system to the finest grain. Each mm wasplaced into acategory
according to the means that were taken to prevent it by thevery way
a system is defined. Atheay was derived for defining a system such
that this entire class of interface errors would be eliminated. The
fust technology derived from this theory concentrated on defining

and building systems in terms of functional hierarchies [11. Having
realized the benefits of addressing one major issue (i.e., reliability)
just by the way a system is defined, wecontinued to evolve with this
philosophy by addressing othex major issues in the same way.
Systems can now be defined with development before the fact
propertis in terms of both functional and type maps where a map
is both a control hierarchy and a network of interacting objects.

2.2: Integrated modeling environment
The philosophy behind this approach is inherently reusable

where reliable systems are defined in terms of reliable systems.
Only reliable systems are used as building blocks and only reliable
system are used as mechaniis to integrate these building blocks
to form a new system. The new system becomes a reusable for
building other systems. Every model is defined in terms of
functional maps (FMaps) to capture time characteristics and type
maps (TMaps) to capture spacecharacteaistics. FMaps andTMaps
guide the designer in thinking through his concepts at all levels of
system design. With thesehierarchia, everything youneed to know
(nomore,noless)isavailable. Allmodelviewpoints (e.g.,dataflow
and timing) can be obtained from Maps and TMaps. Maps of
functions are integrated with maps of types.

On an FMap each node has a function which is defmed in terms
of and controls its children functions. On a TMap each node has a
type which is defined in terms of and controls its children types. For
example, the function, MakeaTable, could be decomposed into
Makeparts and Assemble and the type, Table, into Legs and Top.
Every type on a TMap owns a set of inherited primitive operations.
Each function on an M a p has objects as input and as output. Each
object, a member of a type from a TMap, resides in an object
hierarchy (OMap), an instance of a TMap. FMaps are inherently
integrated with TMaps by using these objects and their primitive
operations. Maps are used to define, integrate, and control the
transformations of objects from one state to another state (e.g., a
table with a broken leg to a table with a tixed leg). Primitive
operations on types defined in the TMap reside at the bottom nodes
of an FMap. Primitive types reside at the bottom nodes of a TMap.
A system with all of its object values assigned for a particular
performance pass exists in the form of an execution map (EMap), an
instance of an FMap. Global and local constraints (which can be
defmed in terms of FMaps and TMaps) can be defined for both
FMaps and TMaps.

vpically, a team of designers will begin system design by
sketching a TMap of their application. Here they decide on the types
of objects (and the relationships between them) that will be in their
system. Often a Road Map (RMap), which organizes all system
objects, including Maps and TMaps, as well as RMaps, them-
selves, will be sketched in parallel with theTMap. Once aTMap(s)
has been weed upon, the FMaps begin almost to fall into place
because of the natural partitioning of functionality provided to the
designers by the TMap system. The TMap provides the structural
criteria from which to evaluate the functional partitioning of the
system (e.g., the shape of the structural partitioning of the maps is
balanced against the structural organization of the shape of the
objects as defined by theTMap), With FMaps and TMaps a system
(and its viewpoints) is divided into functionally natural components
and groups of functional components which naturally work togeth-
er. The system is integrated from the very beginning.

411

2.4: Reusables
Any system can be defined completely using only

primitive structures, but less primitive structures can
be derived from more urimitive ones. Colnclude is an

in the definition of the FMap for system, MukeATable (Figure 1).
The top node function has FIatWood and RoundWood as inputs and
produces Table as output. MukeATile, as a parent, is decomposed
with a Join structure into its children functions, Makeparts and
Assemble. Makeparts takes in as input FIatWood and RoundWood
from its parent and produces Top and Legs as its output. Top and
Legs are given to Assemble as input. Assemble is controlled by its
parent to depend on Makeparts for its input. Assemble produces
Table as output and sends it to its parent.

MukePurts is decomposed into MukeLegs and MakeTop who
are controlled to be independent of each other with the Include
primitive structure. MukeLegs uses part of its parent's input and
MukeTop the rest. MakeLegs provides part of its parent's output
(Legs) to its parent and MukeTop provides the rest. MakeTop
controls its children, with an Or. Here, both children have the same
input and output objects since only one of them will be performed
for a given performance pass. FinishSoftWood will be performed if
the decision function 6:Soft.Wood retums true; otherwise, Finish-
HardWood will be performed. All objects in a system are traceable,
since input is traceable down the system from parent to children and
output is mceable UP I 1

t h i ~ y ~ t t ~ ~ ~ from chii-
drentoparent.MakeAT-
able's TMap, Table,
uses nonprimitivestruc-
tures, a concept dis-
cussed in a later section.

Each typeonaTMap
can be decomuosed in
temof*iivesmc- hgure 2. Use of the three
~ i n t o C ~ & e n t y p e s primitive structures in a TMap

I

where the relationships
between types is explicit. In figure 2% Table is decomposed into Top
and Legs, where the relations between Top and Legs are on4 and
on-2 respectively. The relation between Table and legs is r-I and
between Table and Top is r-0. Top depends on Legs to stand on to
make a Table. An independent relationship exists between the front
legs and the back legs of the Table [Figure 2bl. The Table may have

example of a system pattem that isbed often Figure 3a). ~n this
case, everything stays the same for each use except for the functions
at leaf nodes A and B.
Systems like Coln-
clude can becomeus-
er deftned structures,
derived from more
primitive structures.
Included with each
structure defdtion is
the syntax definition

user defined structure
fori~use(Figure3b). 1tsuseprovidesa"hiddenrepeat"of theentire
system as defined, but explicitly shows only theelements which are
subject to change. Each defmed structure has rules associated with
it for its use just as with the primitive control structures. Rules for
the non-primitives are derived ultimately from the rules of the
primitives.

Async, (Figure 4), is a real-time, distributed communicating
structure with both asynchronous and synchronous behavior. Async
was defined with primitive structura and the Colnclude user
defined structure. It cannot be further decomposed, since each of its
lowest level functions is either a primitive function on a previously
defined type (seeld2 and Cll under End, each of which is aprimitive
operation on any type), recursive (see Async under DoMore), or a
variable function fora&fmedstructure(seeA andEunderProcess).
If a leaf node function does not belong to these categories, it can be
further decomposed or it can refer to an existing operation in a
library or an extemal operation from an outside environment.
Coordinute uses Async as a reusable where two robots, DecideN-
&Step and PegormTmk, are working together to perform a task
such as building a table. Here one phase of the planning robot,
Muster0 is coordinated with the next phase of the slave robot,
SluveO.

A parameterized type is a defined structure which provides the
mechanism to defme a TMap without its particular relations being
explicitly defined. Each parameterized type assumes its own se€ of
possible relations for its parent and children types. TMap Table
(Figure 1) uses a set of default parameterized types. Table controls
Top and Legs, in terms of a Tupleof parametexized type, k g s

412

controls Leg, in terms of OSetOf. and Wood controls Hurd and Soft
with a Oneof. Tupleofis a collection of a fued number of possibly
different types of objects, OSefof is a collection of a variable
number of the same type of objects (in a linear order), and Oneofis
a classification of possibly Merent types of objects from which one
object is selected to represent the class. These parameterized types,

along with Treeof can
be used for designing
any kind of M a p .
Treeof is a collection of
the same type of objects
ordered using a tree in-
&Xing system. Defined

/ Sl.v>= performT.*(Plrmo,sl."eo) ated as lwlsables for
n ~ ~ ~ u t a i = ~ e d d e ~ a n ~ t e p (~ m ~ , ~ . s t e r ~) asynchronous, synchro-

struc&& and parame I lbm%nhmDone I terized types canbecre
11.11 = A (1.0) 7

MuozSI ive = Coadirute (p2uuo,M.stpo,SlaveO)

2.5: FMaps and TMaps and their integration
Figure 5 shows a complete system def~t ion for a manufactur-

ing company, defmed in terms of an integrated set of FMap(s) and
mads) . FMap, Is-Fulllii-Employee, has been decomposed
untilitreachesprimitiveoperationsontypes inTMapflfgCompuny.
(See for example, Emps=Moveto:Employees (MfgC} where MfgC
is of typeMfgCompany and Emps is of type Employees}. MfgCom-
puny has been decomposed until
its leaf nodes are primitive types
or defined as types which are
decomposed in another TMap.

Is-Full7i"ployee uses
objects defined by the "Map to
check if an employee is full or
part time. First a move is made
from the MfgCompany type o b
ject, MfgC to an Employees type
object, Emps. The defined struc-
ture, L0cuteUsing:Name finds
an Employee based on a name.

holder controlled by the parent object (defined us, such as with
Skills.) or a reference to an external object will be contained in the
child place holder controlled by the parent object (forming a relation
between the parent and the external object).

The TMap system provides universal primitive operations,
inherited by all types, for controlling objects and object states. Used
to create, destroy, copy, reference, move, access a value, detect and
recover from errors and access the type of an object, they provide an
easy way to manipulate and think about different types of objects.
With the universal primitive operations, building systems can be
accomplished in a more uniform manner. TMap and OMap are also
available as types in order to facilitate the ability of a system to
understand itself better and manipulate all objects the same way
when it is beneficial to do so. TMap propexties ensure the proper use
of objects in an FMap since a TMap has a corresponding set of
control properties for controlling spatial relationships between
objects. One cannot, for example, put a leg in a position on a table
where a leg already exists; conversely, one cannot remove a leg from
the table where there is no leg; a reference to the state of an object
cannot be modiied if there are other references to that state in the
future; reject values exist in all types, allowing the FMap user to
recover from failures if they are encountered.

With development before the fact, systems engineering and
software development are merged into one discipline. A system is
by its very nature an integration of being function oriented and of
being object oriented. Definitions are independent of particular
function or object oriented implementations. Classical object
oriented system properties such as inheritance, encapsulation, poly-
morphism and persistence are supported with the use of generalized
functions on OMaps and TMaps. With systems constructed in a
tinker toy-lie fashion, reuse naturally takes place throughout the

or prim'tiw ogrntions
(e.g., m t o child object LbCateUsing: Name

I f" p n t objat) YN=Chck-Emp_PayScale@np)

PS=Moveto:Pa yScale(p)
PayScale Skills.

Hourly @at)
YN=iis:FullTme(PS) Pullllme(Ra0

I I

Figure 5. A system: the integration of FMaps and TMaps

Once io&, a move is made from Employee, Emp to PS of type,
Payscale. The primitive operation YN=is:FulITii(PS) is then
used to deermine from PS if Emp is full time or part time.

Abstract types decomposed with the same parameterized type
inherit the same primitive operations, For example, MfgCompuny
and Employee use MoveTo which is inherited from Tupleof Each
use of the MoveTo instantiates the Chi&MoveTo:Child:(Purent}
operation of the Tupleof parameterized type. For example,
Emps=MoveTo:Employees(MfgC)) allows one to navigate to an
employees object from a MfgCompany object, A type may be non-
primitive(e.g.,Depumnts),primitive(e.g., Full7ii as arational
number), or a defrnition which is defined in another type subtree
(e.g., Employees) When a leaf node type has the name of another
type subtree, either the child object will b'e contained in the place

life cycle. Functions and types, no matter how complex, are reused
in terms of FMaps and TMaps and their integration. Objects are
reused as OMaps and scenarios are reused as maps . Architecture
configurations are reused as RAT environments.

Asexperienceisga,inedwithdif€erenttypesofapplications,new
reusables emerge. For example, a set of mechanisms has been
derived for defining hierarchies of interruptible, asynchronous,
communicating, distributedcontrollers. This is essentially a second
order control system (with rules that parallel the primary control
system of the primitive structures) defined with the formal logic of
defined structures that can be represented using a graphical syntax.
In such a system, each distributed region is cooperatively working
with other distributed regions and each parent controller may
interrupt the children under its control.

413

3: An automation of the technology
The 001 tool suite is an automation of deuebptnent before the

fact 131. A full life cycle systems engineering and software devel-
opment environment, it begins with the definition of the meta
process and the definition of reguirements. Using FMaps and
TMaps any kindof system can bedesigned and any kindof sohare
system can be automatically developed resulting in complete,
integrated and fully production ready tiuget system code (or docu-
mentation) conf@red for the language and architecture of choice.
The tool suite also has a means to observe the behavior of a system
as it is being evolved and executed in terms of OMaps and EMaps.
Every system developed with the tool suite is a devebptnent woe
the fact system, including the tool suite itself, since it was used to
define and genmte itself. A discussion of its major components
follows.

Themostimpo~tcomponentinthetoolsuiteis the001 AXES
systems language. Every system defmed with 001 AXES inherits
the devebptnent before the fact propexties providing a basis for the
unification of systems in general. This same language can be used
to develop systems from a systemic viewpoint or from an inmal
or localized procedural viewpoint (e.g., a system model versus a
software model). A unique aspect of this language is its ability to
represent structure as an inherent part of the definition of a system.
The primitive control svu~tures define the fundamental separation
between that which is considered to be inside the boundaries of a
system and that which is to be considered as a part of the environ-
ment in which the system is embedded. The interfaces between a
system and its environment are formally defined in terms of the
objectsandthes~tureofthoseobjects (asdefinedbyaTMap)that
are created, evolved, and deleted as the system interacts (or reacts)
to its environmen~

V i Sphere (VSphere) is a component of the tool suite that
supports a layered system of distributed hierarchical abstract man-
agers. It provides the user the ability to define object relations that
are explicitly traceable. Any relationship between objects can be
defmed providing the user the ability to query on relationships (e.g.,
between a set of requirements and its supporting implementation).
The genemlized manager, ManagMx), based on VSphere, allows
the user to tailor his own development environment, a manager,
itself. To tailor a manager, a user defines his process needs with
FMaps and TMaps and then installs them into Manager(x). Since
the tool suite is a Manager(x) configuration, a user can extend the
tool suite environment itself. These extensions might be interfaces
toothertoolsortools whichhedevelopswiththetoolsuitetosupport
his specific process needs. Although VSphere supports Manager(x)
in providing a user callable and distributable object management
system layer, a user can directly use VSphere as a data type from
within his applications to p v i d e control and distribution of his
objects. This also allows the user's application to behave as an
object manager for users of that user's application.

Requirements Traceability (RT(x)) is an example of a tool
within the tool suite which is a Manager (x) configuration. RT(x)
provides the user with more control over his own requirements
process. It generates metria and allows the user to enter require
ments into the system and trace between these requirements and
corresponding FMaps and TMaps throughout system specification,
detailed design, implementation and documentation. With RT(x)

traceability is backwards and forwards from the beginning of a life
cycle to operation and back again. 'Ikaceability also exists upwards
and downwards since requirements to specification to design to
detailed design is a seamless process.

The tool suite is configured with its own configuration of
Manager(x) which it provides as a default to its users. With this
conQuration the tool suite includes besides Manager(x), itself, the
Session Manager for managing sessions, the Project Manager for
managing projects, the Library Manager for managing libraries
within one project, and the Definition Manager for managing
definitions within a library. The Definition Editor of the Definition
Manager is used to define FMaps and TMaps in either graphical or
in textual form. Each manager manages a Road Map (RMap) of
objects, including other managers, to be managed. An M a p
provides anindextotheuser'ssystemofdefinitionsand~portsthe
managers in the management of these defdtions, including those
for FMaps, TMaps, defined structures, primitive data types, objects
brought in from other environments as well as other RMaps.
Managm use the RMap to coordinate multi-user access to the
definitions of the system being developed. Each RMap in a target
system is an OMap of the objects in the system used to develop that
target system within each particular managers domain. The Road
Map Editor is used to define RMap hierarchies.

At any point during the definition of a model, it may be submitted
to the Analyzer which ensures that the rulm for using the language
are followed. After successful analysis, the model is handed to the
Resource AllocationTool (RAT) for automatic generation of source
code. The RAT can be configured to interface with language, data
base, graphics, client m e r , legacy code, operating system and
machine environments of choice. The 7)qx RAT generates object
type templates for a particular application domain from aTMap(s).
The Functional RAT generates source code from an FMap(s). The
code generated by the Functional RAT is automatically connected
to the code generated from the TMap and code for the primitive
types in the core library, as well as, if desired, libraries developed
from other environments. To maintain traceability, the source code
generatedbytheRAThasthesame~esastheFMaps andTMaps
from which it was generated.

The generated code can be compiled and executed on the
machine where the tool suite resides (the tool suite currently resides
ontheHP700series,IBM RS 6000, SunOS4.Y/solaris,andDigital
Alpha UNIX, X Wmdow, Motif, C, F O K I " and Ada environ-
ments); or, it can be ported to other machines for subsequent
compilation and execution. Once a system has been RAW, it is
ready to be compiled, linked and executed The RATprovides some
automatic debugging in that it generates test code which finds an
additional set of mors dynamically (e.g., not allowing putting a leg
on a table where it already had one). The developer is notified of the
impact inhis system of any changes and those areas that are affected
(e.g., all FMaps that are impacted by a change to a "Map) are
demoted. If a change is made, only that part of the system that is
demoted needs to be regenerated.

The next step is to execute and test the system. In order for the
user to interact with the system being developed, the tool suite
generates default interfaces that obtain the data from the user and
display results. For data types such as boolean and string, this
interface is a simple prompt asking the user to enter the data. For
complex data structures, however, the user uses Datafacer as an

414

object editor to provide comprehensive object viewing and editing.
Datafacer is a run-time subsystem that automatically generates

a user interface based on the data description in the TMap. It uses
the structure described in the TMap to generate appropriate modes
of visualization for the specific data in an OMap. For example, an
ordered set is visualized in Datafacer by default as a scrollable list.
Users can configure alternative visualizations. When given an
OMap instance of the ordered sef Datafaw fills this list with the
actual OMap elements. The resulting interfam are formsentry
screens, much like conventional database screen painm, but with
support for the full semantic capabilities of TMap. Datafacer will
generate screens for arbitrary depth type hierarchies and has full
support for parameterbed types.

In addition to visualizing the structure and values of the data,
Datafacer automatically manages creation and modification of the
data by the user. It binds the primitive operations appropriate for
each data item to graphical controls that the user can activate. For
example, a button labeled with a question mark activates a creation
function when the user double clicks on the button. Similarly,
editing a text field would update the string data for that item.

The capabilities of Datafacer are also available to developers to
buildinterf~thataremorethanjusttestharnesses. Theprimitive
data type DFACE provides an API to Datafacer that gives the
developer complete control over visualization and data modifica-
tion from within his application. Here, the developer can add
functions to capture run-time data events (like higger functions),
perform constraint checking, data analysis and specialized graphics
manipulations. In addition to data specification, the developer has
access to many graphical confguration options. Some of these may
be carefully controlled while others may be left for users to change.

The Xecutor supports the analysis of the behavior (as a simula-
tion) of a system with a hypothetical environment, or the control (as
a real-time executive) of a system with a real environment. As an
executive, the Xecutor schedules and allocates resources in order to
activate primitive operations which interact with the environment.

The Xecutor executes directly the specification (as Maps and
TMaps) of a system by operating as an asynchronous run-time
executive having multiple lines of concurrent control over these
activated functions. Activated primitive functions send their input
events out into the environment and then after some period of time
receive their outputs as incoming events from the environment.
These events will then trigger other primitive functions in the
system causing an intemal reaction resulting in local system concur-
rency given that the functional architecture and the allocated r e
source architecture align to produce system parallelism. The
Xecutor at any point is able to activate dynamically bound execut-
able functions (which have been defmed in FMaps & "Maps as a
software specification and implmated in some programming
language) to supprt its own extension as an execution environment
as well as environment specific interaction functions.

As a simulator/planning tool, the Xecutor records and displays
information to the user for the evaluation of the resources which
have been allocated to the functions of the functional architecture.
It understands the real-timesemantics embedded in a001 definition.
It allows the user to execute or simulate a system before implemen-
tationinordertoobservecharactssuchastimmg,cost andrisk

basedupon aparticular allocationofresources. Ifthemodelbeing
simulated by the Xecutor has been designed to be a production
software system, then the same FMaps and TMaps can be RAM
forproduction. TheXecutorcanbeusedto analyzeprocessessuch
as thoseinabusiness (en~emodel),manufacturing~software
development environment (process model) as well as detailed
algorithms (e.g., searching for parallelism). Because a system is
defined from the very beginning to support its own run-time
performance analysis, the Xecutor is able to perform many power-
ful functions for the systems engineer,

The Baseliner provides version control and base lining for all
RMaps, FMaps, TMaps and user defined reusables, including
defined structures. The Build Manager's primary role is to manage
all entities which are used in the construction of an executable.

The tool suiteenvironmentprovides anew set of alternatives for
disciplines associated with the traditional development process.
Take for example, reverse engineering. Redevelopment is a more
viable option, since a system can be developed with higherreliabd-
ity and productivity than before. Another alternative is to develop
mainportionsofasystem withthisapproachbutinterfacetoexisting
legacy libraries at the core primitive level. In the future, however,
for those systems originally developed with the tool suite, reverse
engineering becomes a m a w of configuring and/or selecting the
appropriate RAT configuration and then RATting to the new envi-
ronment. In such a way the tool suite takes advantage of the fact that
a system is defmed from the very beginning to inherently maximize
the potential for its own automation.

4: Results
Many systems have been designed and developed with this

paradigm, including those which reside within manufacturing,
aerospace, software tool development [4], data base management
[5] , transaction processing, process control, simulation [6] and
domain analysis environments [7] . One of these systems is the 001
tool suite, itself [4]. Approximately 800,000 lines of C code were
automatically generated for each of 4 platforms by the tool suite to
aeate itself. Over 7 million lines of code have been generated by
the tool suite to generate its 3 major versions on these platfom.
Contained within the tool suite are many kinds of tools (applica-
tions) that havebeen automatically generated as integrated systems,
including database management, communications, client server,
graphics, software development tools, and scientific systems. They
are inherently integrated as part of the same system.

Recently, the tool suite was part of a National Test Bed experi-
ment [81. The same problem was provided to each of three contrac-
torbendor teams. The application was real time, distributed, multi-
user, client server, and was required to be defmed and developed
under government 2167A guidelines. All teams completed the
definitionof preliminary requirements, two teams continued an to
complete detailed design and one team, the 001 team, continued on
to automatically generate complete and fully production ready
code; this code (both C and Ada were generated from the same
defintions) was running in both languages at the completion of the
experiment. We have analyzed our results on an ongoing basis in
order to understand more fully the impact that properties of a
system's definition have on the productivity in its development.
Productivity was analyzed with several systems. Compared to a

415

traditional C development where each developer produces 10 lines
of code a day, the productivity of 001 developed systems varied
from 10 to 1 to 100 to 1. (In the eighties, 10 lines of code aday per
person was the g o v m e n t expected output, Now it is more likely
to be 2 to 5 lines a day). Unlike with traditional systems, the larger
a system, the higher the productivity. This is in large part because
of the high degree of reuse on large systems.

5: The next step
The tool suite has evolved over years based upon user feedback

and a continuing direction of capitaliig more on advanced
capabilitia of development before the fact. Datafacer and DFACE
areexamples of newer tools to bemade recently available to external
users. This was after the developem of the tool suite used them for
several months to develop themost recentversions of the tool suite.
ManagNx), an even newer capability, is going through a similar
evolution with the developers of the tool suite,

New components to be added to the tool suite environment are
the generic Anti-RAT and the architecture independent operating
system (AIOS) [9]. With the anti-RAT legacy code and legacy
defintions can be reverse engineered to maps and “Maps and
become a development before the fact system before proceeding
through the RAT process to generate (regenerate) the target system
in the language and architecture of choice. The amount of user
interaction after the FMaps and maps have been generated will
depend on how formal the legacy code was in the first place and on
the degree to which the user would like to change or raise the level
of his specification. The tool suite currently has an instance of the
Anti-RATin that it can generate FMaps and “laps from equations.
The user has the ability to attach equations to the bottom nodes of
FMapsmakinguseofthiscapability. Uponcomparingtheanti-RAT
reverse engineering approach with the reverse engineering a p
proaches discussed above there are advantages anddisadvantages to
each one depending on the requirements of the user.

The AIOS will have theintelligence to understand the semantics
of functional, resource and resource allocation architectures since
all of these architectures can be defined in terms of maps and
“Maps. It will make use of the information in their definitions
(including the matching of indepen&ncies and dependencies b e
tween architectures) to automatically determine sets of possible
effective matches between functional and ~ ~ S O K W architectures.
TheDistributedXecutor, amoduleof theAIOS, will provide forreal
time distributed object management capabilities where the user’s
application will be fully transparent to client server programming
techniques and communication protocols.

6: Summary
As was shown above, collective experience c o n f i i that qual-

ity and productivity increase with the incmed use of developvnent
before the facf propertieS. A major factor is the inherent reuse in
these systems culminating in ultimate reuse which is automation,
itself. Effective reuse is a preventative concept. For successful
reuse, a system has to be worth reusing and reused for each user
requiringfunctionalityequivalentto it. Thismeansstartingfromthe
beginning of a life cycle, not at the end which is typically the case
with traditional methods; then asystem is reused for each new phase
of development. No matter what kind, every ten reuses saves ten
unnecessary developments.

Theparadigmshift occurs whenadesignerrealizes thatmany of
the things he used before are no longer needed. Techniques for
reconciling multiple incompatible techniques and bridging the gap
fiomonephaseof thelifecycle to anotherbecomeobsolete. Testing
procedures and after the fact tools for finding the majority of m m
areno longerneededbecause theseerrom no longer exist. The same
is me for the majority of tools developed to support programming
as a manual process. In the end, it is the combination of the
technology and the process that executes that technology that forms
the foundation of successful software. Software is so ingrained in
our society that its success or failure will change dramatically the
way businesses and governments are operated as well as their
overall success. It is for this reason that the decisions made today
relating to systems engineering and softwaredevelopment will have
such far reaching effeck.

It is within our mistakes that the answers for success often exist.
The first step is to recognize the root problems. They can then be
understood in t e m of how to prevent them in the future. This is
followed by the derivation of practical solutions. The process is then
repeated by looking for problem areas in tem of the new solution
environment. In contrast to the just-in-time philosophy, thepreven-
tative philosophy is to solve a given problem such as findig or
preventing errors as soon as possible (ASAP). Finding an error
statically is an earlier process than finding it dynamically. Prevent-
ing it by the very way a system is defined is even earlier. Not having
to define (and build) it at all is earlier yet. The answer continues to
be in the results.

References
[l] M. Hamilton, “ZxeDefect Software: the Elusive Goal,” IEEE

Speu” , vol. 23, no. 3, pp. 48-53, March, 1986.
[2] M. Hamilton and R Hackler, 001 : “A Rapid Development Approach

for Rapid Rototyping Based on a System that SUPPOIIS its Own
Life Cycle”, IEEE proceedings, First InferMtional Workshop on
Rapid System Prototyping, Research ’kiangle park, NC, June 4,
1990.

Apd 4,1994, P 8 ES; :Development Before the Fact in Action”,
PiutII,June13,1994,P22ES.

[4] The 001 Tool Suite Reference Manual, Version 3. Cambridge, MA,
Hamilton Technologies, Inc., January 1993.

[5] The OpedNGRES Object Generator reference manual, Version 1,
Alameda, CA, ASK Group Ingres, June 1994

[6] B. McCauley, “Software Development Tools in the 199Os”, AIS
Security Technology for Space Operations Conference, Houston,
Texas, July 1993.

[7] B. Krut, JL, “Integrating 001 Tool Suppofi in the Feature-oriented
Domain Analysis Methodology” (CMU/SEI-93-TR-ll, ESC-

Camegie Mellon University, 1993.

Experiment Summary. Table 1, Page 9. Department of Defense,
Strategic Defense Initiative, Washington, D.C., 20301-7100.

Demonstration”, prepared for Strategic Defense Organization
(SDIO) and Los Alamos National J&oratory, Los Alamos, NM

[3] Electronic Design, “Inside Development Before the Fact“, part I,

TR-93-188), Piasburgh, PA:Software Engineering Institute,

[8] S o f t w a ~ -Wring Tools Experiment-Final R W , Vols. 1,

[9] Hamilton Technologies, Inc., “Final Report: AIOS Xecutor

87545, order NO. 9-XGl-K9937-1,1991.

416

