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Abstract 
Traditional software environments help ‘@x wrong things 

up” instead of “doing them right in the first place”. Things 
happen WO late i f  at all. Quality is compromised. Dollars are 
wasted. 

Aprom’singparadigm isdevelopment before the fact where 
a system’s properties control its own development. The goal is 
todevelopasystemwithbuilt-inqualityandbuilt-inproductiv- 
ity. Whereas the traditional approach is curative, develop- 
ment before the fact ispreventative. Its formal language, both 
function and object oriented, 1; ;he key. 

Described herein is the technology and its automation, a 
full life cycle systems engineering and software development 
environment. Complete, fully production-ready, integrated 
code can be automatically generated for any kind of software 
system as well as be cor@guredfor the language and architec- 
ture of choice. Also described is users’ experience in its 
application to real world systems. 

1: Introduction 
Traditional system engineeaing and software development envi- 

ronments help their users “fm wrong things up” or worm tasks 
that should no longer be necessary instead of helping them “do 
things right in the frst place”. Because critical issues are dealt with 
@er thefact, true reuse is ignored. Quality and functionality are 
compromised. Responding to today’s rapidly changing market is 
not practical. Deadlines are missed. lime and dollars are wasted. 
The competitive edge is lost. 

Take, for example, defining requirements. Incompatible meth- 
ods are used to capture even part of a definition (e.g., data flow and 
timing). Once defined, there is no way to integrate the parts. 
Methods available to them force designers to think this way, leading 
to further problems. Integration of objects (object to object), 
modules, phases, or application types is a challenge left to the 
devices of a myriad of developers well into the develoment. 

a disbibuted environment. Another unnecessary development. 
Insufllcient information about a system’s run-time performance, 
including concerning decisions to be made Ween algorithms or 
architectures, is incorporated into a system definition. This results 
in design decisions that depend on analysis of outputs from exmis- 
ing ad hoc implementations and associated testing scenarios. It is 
not known if a design is a good one until its implementation has 
failed or succeeded. 

Focus forreuseis lateintodevelopment duringthecodingphase. 
Definitions lack properties to help find, create and make use of 
commonality. Modelers are forced to use the same informal 
methods for dividing a system into components natural for reuse. 
Little incentive exists for reuse in today’s changing market if a 
module is not able to be integrated, not portable or adaptable and it 
is error prone. Redundancy is a way of life. 

Automation, itself, is an inherently reusable process. If a 
solution does not exist for reuse, it does not exist for automation. 
Systems are defined with insu€ticient intelligence for automated 
tools to use them as input. Too often, these tools concentrate on 
supporting the manual process instead of doing the real work. 
Definitions supported by automation aregiven to developers to turn 
into code manually. A process that could have been mechanized 
p~lcpr for reuse is performed manually over and over again. When 
automation attempts to do thereal work, it is often incomplete across 
application domains or even within a domain resulting in hcom- 
pletecodesuchas shellccde. Anautomation for onepartof asystem 
(e.g., graphics) needs to be manually integrated with an automation 
for anotherpartof thesystem (e.g., scientifc algorithms). Thecode 
generated is often inefficient and/or hard wired to a particular 
architecture or language. Eveaywhere manual processes complete 
unfinished automations, Most of the development process is 
needlessly manual. 

A promising solution to these problems is development before 
thefact. Whereas the traditional approach is curative, this approach 
is preventative. 

compounded b i  the use of &matched development prhucts. 
System are actually encouraged by these methods to be defined as 
a”lous* Interfaces are incompatible and errors propagate 
throughout development. Again thedevelopers inherit theproblem. 
The s y s m  and its development are out of control. 

development. Mainmance is risky andcostly. Adisaibuted system 
isoftenfirsttargetedforasingleprocessorandthenredevelopdfor 

2: D~~~~~~~~~~ before the fact 
With development before the fact a system is defined with 

properties An 
emphasis is placed on defining things right the first time. From the 
beginning, asystem integrates all of its own objects (and all aspects 

capitalizes on its own parallelism; supports its own run-time 
mance analysis; and maximizes the 

“Uy control its own development. 

Require“ts* On Promes, do not con- of these objwts) and the ~mbmations of functionality using these sider that the User Will  change his mind. Porting involves new objects; its own reliability and flexibility to 

for its own reuse and 
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automation; it is developedwith built-inquality and built-inproduc- 
tivity. 

2.1: Technology 
The development before t h e f a  technology includes a language, 

an approach, and a process, all of which are based upon a formal 
theory. Once understood, the characteristics of good design can be 
reused by incorporating them into a language for defining any 
system. This language is the key to development before thefact. It 
has the capability to define any aspect of and about any system and 
integrate it with any other aspect These aspects are directly related 
to the real world. This same language can be used to define system 
requirements, specifications, design, and detailed design for func- 
tional, resource and resource allocation architectures throughout all 
levels and layers of “seamless” definition, including hardware, 
software and peopleware. It can be used to define systems for real 
time or data base environments with diverse degrees of fidelity and 
completeness. With this language, function-oriented parts of a 
system are defmed to integrate with object-oriented parts; control 
hieranhies are defined to integrate with networks of functions and 
objects. Such a language is always considered a design language, 
since design is relative; one person’s design phase is another 
person’s implementation phase. Semanticsdependent but syntax- 
independent, its mechanisms are used to define mechanisms for 
defining systems. Although the core language is generic, the user 
“language”, a by-product of a development, can be application 
specific. 

The first step in building a before thefact system is to manage 
the system by configuring the process management environment. 
The next is to define a model. The model is automatically analyzed, 
statically and dynamically, to ensure that it was defined properly. 
Managementmetria arecollectedandanalyzed. Afullyproduction 
ready andfullyinte~~softwareimplementation,consistentwith 
themodel, is then automatically generated by ageneric generator for 
a selected target environment in the language and architecture of 
choice. If the required environment has been configured, it is 
selected directly; if not, the generator is configured for a new 
environment before it is selected. The resulting system can then be 
executed. It becomes operational after testing. Target changes are 
made to the definition, not to the code. Target architecture changes 
are made to the confqwation of the generator environment, not to 
the code. Once a system has been developed, the system and the 
p m s  used to develop it are analyzed to understand how to 
improve the next round of system development. The process 
evolves before proceeding through another iteration of system 
engineering and software development. 

Development before the f i t  is a function and object-oriented 
approachbasedupnauniqueconceptofcontrol [ll, [2],[31. This 
approach had its earlier b e , g i i  with the Apollo space missions 
when reseafch was performed for developing man-rated software. 
This led to the finding that interface errors accounted for most errors 
found in the flight software during fmal testing. They include data 
flow, piority and timing errors at both the highest and lowest levels 
of a system to the finest grain. Each mm wasplaced into acategory 
according to the means that were taken to prevent it by thevery way 
a system is defined. Atheay was derived for defining a system such 
that this entire class of interface errors would be eliminated. The 
fust technology derived from this theory concentrated on defining 

and building systems in terms of functional hierarchies [ 11. Having 
realized the benefits of addressing one major issue (i.e., reliability) 
just by the way a system is defined, wecontinued to evolve with this 
philosophy by addressing othex major issues in the same way. 
Systems can now be defined with development before the fact 
propertis in terms of both functional and type maps where a map 
is both a control hierarchy and a network of interacting objects. 

2.2: Integrated modeling environment 
The philosophy behind this approach is inherently reusable 

where reliable systems are defined in terms of reliable systems. 
Only reliable systems are used as building blocks and only reliable 
system are used as mechaniis to integrate these building blocks 
to form a new system. The new system becomes a reusable for 
building other systems. Every model is defined in terms of 
functional maps (FMaps) to capture time characteristics and type 
maps (TMaps) to capture spacecharacteaistics. FMaps andTMaps 
guide the designer in thinking through his concepts at all levels of 
system design. With thesehierarchia, everything youneed to know 
(nomore,noless)isavailable. Allmodelviewpoints (e.g.,dataflow 
and timing) can be obtained from Maps and TMaps. Maps of 
functions are integrated with maps of types. 

On an FMap each node has a function which is defmed in terms 
of and controls its children functions. On a TMap each node has a 
type which is defined in terms of and controls its children types. For 
example, the function, MakeaTable, could be decomposed into 
Makeparts and Assemble and the type, Table, into Legs and Top. 
Every type on a TMap owns a set of inherited primitive operations. 
Each function on an M a p  has objects as input and as output. Each 
object, a member of a type from a TMap, resides in an object 
hierarchy (OMap), an instance of a TMap. FMaps are inherently 
integrated with TMaps by using these objects and their primitive 
operations. Maps are used to define, integrate, and control the 
transformations of objects from one state to another state (e.g., a 
table with a broken leg to a table with a tixed leg). Primitive 
operations on types defined in the TMap reside at the bottom nodes 
of an FMap. Primitive types reside at the bottom nodes of a TMap. 
A system with all of its object values assigned for a particular 
performance pass exists in the form of an execution map (EMap), an 
instance of an FMap. Global and local constraints (which can be 
defmed in terms of FMaps and TMaps) can be defined for both 
FMaps and TMaps. 

vpically, a team of designers will begin system design by 
sketching a TMap of their application. Here they decide on the types 
of objects (and the relationships between them) that will be in their 
system. Often a Road Map (RMap), which organizes all system 
objects, including Maps and TMaps, as well as RMaps, them- 
selves, will be sketched in parallel with theTMap. Once aTMap(s) 
has been weed upon, the FMaps begin almost to fall into place 
because of the natural partitioning of functionality provided to the 
designers by the TMap system. The TMap provides the structural 
criteria from which to evaluate the functional partitioning of the 
system (e.g., the shape of the structural partitioning of the maps  is 
balanced against the structural organization of the shape of the 
objects as defined by theTMap), With FMaps and TMaps a system 
(and its viewpoints) is divided into functionally natural components 
and groups of functional components which naturally work togeth- 
er. The system is integrated from the very beginning. 
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2.4: Reusables 
Any system can be defined completely using only 

primitive structures, but less primitive structures can 
be derived from more urimitive ones. Colnclude is an 

in the definition of the FMap for system, MukeATable (Figure 1). 
The top node function has FIatWood and RoundWood as inputs and 
produces Table as output. MukeATile, as a parent, is decomposed 
with a Join structure into its children functions, Makeparts and 
Assemble. Makeparts takes in as input FIatWood and RoundWood 
from its parent and produces Top and Legs as its output. Top and 
Legs are given to Assemble as input. Assemble is controlled by its 
parent to depend on Makeparts for its input. Assemble produces 
Table as output and sends it to its parent. 

MukePurts is decomposed into MukeLegs and MakeTop who 
are controlled to be independent of each other with the Include 
primitive structure. MukeLegs uses part of its parent's input and 
MukeTop the rest. MakeLegs provides part of its parent's output 
(Legs ) to its parent and MukeTop provides the rest. MakeTop 
controls its children, with an Or. Here, both children have the same 
input and output objects since only one of them will be performed 
for a given performance pass. FinishSoftWood will be performed if 
the decision function 6:Soft.Wood retums true; otherwise, Finish- 
HardWood will be performed. All objects in a system are traceable, 
since input is traceable down the system from parent to children and 
output is mceable UP I 1 

t h i ~ y ~ t t ~ ~ ~  from chii- 
drentoparent.MakeAT- 
able's TMap, Table, 
uses nonprimitivestruc- 
tures, a concept dis- 
cussed in a later section. 

Each typeonaTMap 
can be decomuosed in 
temof*iivesmc- hgure 2. Use of the three 
~ i n t o C ~ & e n t y p e s  primitive structures in a TMap 

I 

where the relationships 
between types is explicit. In figure 2% Table is decomposed into Top 
and Legs, where the relations between Top and Legs are on4 and 
on-2 respectively. The relation between Table and legs is r-I and 
between Table and Top is r-0. Top depends on Legs to stand on to 
make a Table. An independent relationship exists between the front 
legs and the back legs of the Table [Figure 2bl. The Table may have 

example of a system pattem that isbed often Figure 3a). ~n this 
case, everything stays the same for each use except for the functions 
at leaf nodes A and B. 
Systems like Coln- 
clude can becomeus- 
er deftned structures, 
derived from more 
primitive structures. 
Included with each 
structure defdtion is 
the syntax definition 

user defined structure 
fori~use(Figure3b). 1tsuseprovidesa"hiddenrepeat"of theentire 
system as defined, but explicitly shows only theelements which are 
subject to change. Each defmed structure has rules associated with 
it for its use just as with the primitive control structures. Rules for 
the non-primitives are derived ultimately from the rules of the 
primitives. 

Async, (Figure 4), is a real-time, distributed communicating 
structure with both asynchronous and synchronous behavior. Async 
was defined with primitive structura and the Colnclude user 
defined structure. It cannot be further decomposed, since each of its 
lowest level functions is either a primitive function on a previously 
defined type (seeld2 and Cll under End, each of which is aprimitive 
operation on any type), recursive (see Async under DoMore), or a 
variable function fora&fmedstructure(seeA andEunderProcess). 
If a leaf node function does not belong to these categories, it can be 
further decomposed or it can refer to an existing operation in a 
library or an extemal operation from an outside environment. 
Coordinute uses Async as a reusable where two robots, DecideN- 
&Step and PegormTmk, are working together to perform a task 
such as building a table. Here one phase of the planning robot, 
Muster0 is coordinated with the next phase of the slave robot, 
SluveO. 

A parameterized type is a defined structure which provides the 
mechanism to defme a TMap without its particular relations being 
explicitly defined. Each parameterized type assumes its own se€ of 
possible relations for its parent and children types. TMap Table 
(Figure 1) uses a set of default parameterized types. Table controls 
Top and Legs, in terms of a Tupleof parametexized type, k g s  
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controls Leg, in terms of OSetOf. and Wood controls Hurd and Soft 
with a Oneof. Tupleofis a collection of a fued number of possibly 
different types of objects, OSefof is a collection of a variable 
number of the same type of objects (in a linear order), and Oneofis 
a classification of possibly Merent types of objects from which one 
object is selected to represent the class. These parameterized types, 

along with Treeof can 
be used for designing 
any kind of M a p .  
Treeof is a collection of 
the same type of objects 
ordered using a tree in- 
&Xing system. Defined 

/ Sl.v>= performT.*(Plrmo,sl."eo) ated as lwlsables for 
n ~ ~ ~ u t a i  = ~ e d d e ~ a n ~ t e p ( ~ m ~ , ~ . s t e r ~ )  asynchronous, synchro- 

struc&& and parame I lbm%nhmDone I terized types canbecre 
11.11 = A (1.0) 7 

MuozSI ive = Coadirute (p2uuo,M.stpo,SlaveO) 

2.5: FMaps and TMaps and their integration 
Figure 5 shows a complete system def~t ion for a manufactur- 

ing company, defmed in terms of an integrated set of FMap(s) and 
mads ) .  FMap, Is-Fulllii-Employee, has been decomposed 
untilitreachesprimitiveoperationsontypes inTMapflfgCompuny. 
(See for example, Emps=Moveto:Employees (MfgC} where MfgC 
is of typeMfgCompany and Emps is of type Employees}. MfgCom- 
puny has been decomposed until 
its leaf nodes are primitive types 
or defined as types which are 
decomposed in another TMap. 

Is-Full7i"ployee uses 
objects defined by the "Map to 
check if an employee is full or 
part time. First a move is made 
from the MfgCompany type o b  
ject, MfgC to an Employees type 
object, Emps. The defined struc- 
ture, L0cuteUsing:Name finds 
an Employee based on a name. 

holder controlled by the parent object (defined us, such as with 
Skills.) or a reference to an external object will be contained in the 
child place holder controlled by the parent object (forming a relation 
between the parent and the external object). 

The TMap system provides universal primitive operations, 
inherited by all types, for controlling objects and object states. Used 
to create, destroy, copy, reference, move, access a value, detect and 
recover from errors and access the type of an object, they provide an 
easy way to manipulate and think about different types of objects. 
With the universal primitive operations, building systems can be 
accomplished in a more uniform manner. TMap and OMap are also 
available as types in order to facilitate the ability of a system to 
understand itself better and manipulate all objects the same way 
when it is beneficial to do so. TMap propexties ensure the proper use 
of objects in an FMap since a TMap has a corresponding set of 
control properties for controlling spatial relationships between 
objects. One cannot, for example, put a leg in a position on a table 
where a leg already exists; conversely, one cannot remove a leg from 
the table where there is no leg; a reference to the state of an object 
cannot be modiied if there are other references to that state in the 
future; reject values exist in all types, allowing the FMap user to 
recover from failures if they are encountered. 

With development before the fact, systems engineering and 
software development are merged into one discipline. A system is 
by its very nature an integration of being function oriented and of 
being object oriented. Definitions are independent of particular 
function or object oriented implementations. Classical object 
oriented system properties such as inheritance, encapsulation, poly- 
morphism and persistence are supported with the use of generalized 
functions on OMaps and TMaps. With systems constructed in a 
tinker toy-lie fashion, reuse naturally takes place throughout the 

or prim'tiw ogrntions 
(e.g., m t o  child object LbCateUsing: Name 

I f" p n t  objat)  YN=Chck-Emp_PayScale@np) 

PS=Moveto:Pa yScale(p) 
PayScale Skills. 

Hourly @at) 
YN=iis:FullTme(PS) Pullllme(Ra0 

I I 

Figure 5. A system: the integration of FMaps and TMaps 

Once io&, a move is made from Employee, Emp to PS of type, 
Payscale. The primitive operation YN=is:FulITii(PS) is then 
used to deermine from PS if Emp is full time or part time. 

Abstract types decomposed with the same parameterized type 
inherit the same primitive operations, For example, MfgCompuny 
and Employee use MoveTo which is inherited from Tupleof Each 
use of the MoveTo instantiates the Chi&MoveTo:Child:(Purent} 
operation of the Tupleof parameterized type. For example, 
Emps=MoveTo:Employees(MfgC)) allows one to navigate to an 
employees object from a MfgCompany object, A type may be non- 
primitive(e.g.,Depumnts),primitive(e.g., Full7ii as arational 
number), or a defrnition which is defined in another type subtree 
(e.g., Employees) When a leaf node type has the name of another 
type subtree, either the child object will b'e contained in the place 

life cycle. Functions and types, no matter how complex, are reused 
in terms of FMaps and TMaps and their integration. Objects are 
reused as OMaps and scenarios are reused as maps .  Architecture 
configurations are reused as RAT environments. 

Asexperienceisga,inedwithdif€erenttypesofapplications,new 
reusables emerge. For example, a set of mechanisms has been 
derived for defining hierarchies of interruptible, asynchronous, 
communicating, distributedcontrollers. This is essentially a second 
order control system (with rules that parallel the primary control 
system of the primitive structures) defined with the formal logic of 
defined structures that can be represented using a graphical syntax. 
In such a system, each distributed region is cooperatively working 
with other distributed regions and each parent controller may 
interrupt the children under its control. 
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3: An automation of the technology 
The 001 tool suite is an automation of deuebptnent before the 

fact 131. A full life cycle systems engineering and software devel- 
opment environment, it begins with the definition of the meta 
process and the definition of reguirements. Using FMaps and 
TMaps any kindof system can bedesigned and any kindof sohare 
system can be automatically developed resulting in complete, 
integrated and fully production ready tiuget system code (or docu- 
mentation) conf@red for the language and architecture of choice. 
The tool suite also has a means to observe the behavior of a system 
as it is being evolved and executed in terms of OMaps and EMaps. 
Every system developed with the tool suite is a devebptnent woe 
the fact system, including the tool suite itself, since it was used to 
define and genmte itself. A discussion of its major components 
follows. 

Themostimpo~tcomponentinthetoolsuiteis the001 AXES 
systems language. Every system defmed with 001 AXES inherits 
the devebptnent before the fact propexties providing a basis for the 
unification of systems in general. This same language can be used 
to develop systems from a systemic viewpoint or from an inmal  
or localized procedural viewpoint (e.g., a system model versus a 
software model). A unique aspect of this language is its ability to 
represent structure as an inherent part of the definition of a system. 
The primitive control svu~tures define the fundamental separation 
between that which is considered to be inside the boundaries of a 
system and that which is to be considered as a part of the environ- 
ment in which the system is embedded. The interfaces between a 
system and its environment are formally defined in terms of the 
objectsandthes~tureofthoseobjects (asdefinedbyaTMap)that 
are created, evolved, and deleted as the system interacts (or reacts) 
to its environmen~ 

V i  Sphere (VSphere) is a component of the tool suite that 
supports a layered system of distributed hierarchical abstract man- 
agers. It provides the user the ability to define object relations that 
are explicitly traceable. Any relationship between objects can be 
defmed providing the user the ability to query on relationships (e.g., 
between a set of requirements and its supporting implementation). 
The genemlized manager, ManagMx), based on VSphere, allows 
the user to tailor his own development environment, a manager, 
itself. To tailor a manager, a user defines his process needs with 
FMaps and TMaps and then installs them into Manager(x). Since 
the tool suite is a Manager(x) configuration, a user can extend the 
tool suite environment itself. These extensions might be interfaces 
toothertoolsortools whichhedevelopswiththetoolsuitetosupport 
his specific process needs. Although VSphere supports Manager(x) 
in providing a user callable and distributable object management 
system layer, a user can directly use VSphere as a data type from 
within his applications to p v i d e  control and distribution of his 
objects. This also allows the user's application to behave as an 
object manager for users of that user's application. 

Requirements Traceability (RT(x)) is an example of a tool 
within the tool suite which is a Manager (x) configuration. RT(x) 
provides the user with more control over his own requirements 
process. It generates metria and allows the user to enter require 
ments into the system and trace between these requirements and 
corresponding FMaps and TMaps throughout system specification, 
detailed design, implementation and documentation. With RT(x) 

traceability is backwards and forwards from the beginning of a life 
cycle to operation and back again. 'Ikaceability also exists upwards 
and downwards since requirements to specification to design to 
detailed design is a seamless process. 

The tool suite is configured with its own configuration of 
Manager(x) which it provides as a default to its users. With this 
conQuration the tool suite includes besides Manager(x), itself, the 
Session Manager for managing sessions, the Project Manager for 
managing projects, the Library Manager for managing libraries 
within one project, and the Definition Manager for managing 
definitions within a library. The Definition Editor of the Definition 
Manager is used to define FMaps and TMaps in either graphical or 
in textual form. Each manager manages a Road Map (RMap) of 
objects, including other managers, to be managed. An M a p  
provides anindextotheuser'ssystemofdefinitionsand~portsthe 
managers in the management of these defdtions, including those 
for FMaps, TMaps, defined structures, primitive data types, objects 
brought in from other environments as well as other RMaps. 
Managm use the RMap to coordinate multi-user access to the 
definitions of the system being developed. Each RMap in a target 
system is an OMap of the objects in the system used to develop that 
target system within each particular managers domain. The Road 
Map Editor is used to define RMap hierarchies. 

At any point during the definition of a model, it may be submitted 
to the Analyzer which ensures that the rulm for using the language 
are followed. After successful analysis, the model is handed to the 
Resource AllocationTool (RAT) for automatic generation of source 
code. The RAT can be configured to interface with language, data 
base, graphics, client m e r ,  legacy code, operating system and 
machine environments of choice. The 7)qx RAT generates object 
type templates for a particular application domain from aTMap(s). 
The Functional RAT generates source code from an FMap(s). The 
code generated by the Functional RAT is automatically connected 
to the code generated from the TMap and code for the primitive 
types in the core library, as well as, if desired, libraries developed 
from other environments. To maintain traceability, the source code 
generatedbytheRAThasthesame~esastheFMaps andTMaps 
from which it was generated. 

The generated code can be compiled and executed on the 
machine where the tool suite resides (the tool suite currently resides 
ontheHP700series,IBM RS 6000, SunOS4.Y/solaris,andDigital 
Alpha UNIX, X Wmdow, Motif, C, F O K I "  and Ada environ- 
ments); or, it can be ported to other machines for subsequent 
compilation and execution. Once a system has been RAW, it is 
ready to be compiled, linked and executed The RATprovides some 
automatic debugging in that it generates test code which finds an 
additional set of mors dynamically (e.g., not allowing putting a leg 
on a table where it already had one). The developer is notified of the 
impact inhis system of any changes and those areas that are affected 
(e.g., all FMaps that are impacted by a change to a "Map) are 
demoted. If a change is made, only that part of the system that is 
demoted needs to be regenerated. 

The next step is to execute and test the system. In order for the 
user to interact with the system being developed, the tool suite 
generates default interfaces that obtain the data from the user and 
display results. For data types such as boolean and string, this 
interface is a simple prompt asking the user to enter the data. For 
complex data structures, however, the user uses Datafacer as an 
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object editor to provide comprehensive object viewing and editing. 
Datafacer is a run-time subsystem that automatically generates 

a user interface based on the data description in the TMap. It uses 
the structure described in the TMap to generate appropriate modes 
of visualization for the specific data in an OMap. For example, an 
ordered set is visualized in Datafacer by default as a scrollable list. 
Users can configure alternative visualizations. When given an 
OMap instance of the ordered sef Datafaw fills this list with the 
actual OMap elements. The resulting interfam are formsentry 
screens, much like conventional database screen painm, but with 
support for the full semantic capabilities of TMap. Datafacer will 
generate screens for arbitrary depth type hierarchies and has full 
support for parameterbed types. 

In addition to visualizing the structure and values of the data, 
Datafacer automatically manages creation and modification of the 
data by the user. It binds the primitive operations appropriate for 
each data item to graphical controls that the user can activate. For 
example, a button labeled with a question mark activates a creation 
function when the user double clicks on the button. Similarly, 
editing a text field would update the string data for that item. 

The capabilities of Datafacer are also available to developers to 
buildinterf~thataremorethanjusttestharnesses. Theprimitive 
data type DFACE provides an API to Datafacer that gives the 
developer complete control over visualization and data modifica- 
tion from within his application. Here, the developer can add 
functions to capture run-time data events (like higger functions), 
perform constraint checking, data analysis and specialized graphics 
manipulations. In addition to data specification, the developer has 
access to many graphical confguration options. Some of these may 
be carefully controlled while others may be left for users to change. 

The Xecutor supports the analysis of the behavior (as a simula- 
tion) of a system with a hypothetical environment, or the control (as 
a real-time executive) of a system with a real environment. As an 
executive, the Xecutor schedules and allocates resources in order to 
activate primitive operations which interact with the environment. 

The Xecutor executes directly the specification (as Maps and 
TMaps) of a system by operating as an asynchronous run-time 
executive having multiple lines of concurrent control over these 
activated functions. Activated primitive functions send their input 
events out into the environment and then after some period of time 
receive their outputs as incoming events from the environment. 
These events will then trigger other primitive functions in the 
system causing an intemal reaction resulting in local system concur- 
rency given that the functional architecture and the allocated r e  
source architecture align to produce system parallelism. The 
Xecutor at any point is able to activate dynamically bound execut- 
able functions (which have been defmed in FMaps & "Maps as a 
software specification and implmated in some programming 
language) to supprt its own extension as an execution environment 
as well as environment specific interaction functions. 

As a simulator/planning tool, the Xecutor records and displays 
information to the user for the evaluation of the resources which 
have been allocated to the functions of the functional architecture. 
It understands the real-timesemantics embedded in a001 definition. 
It allows the user to execute or simulate a system before implemen- 
tationinordertoobservecharactssuchastimmg,cost andrisk 

basedupon aparticular allocationofresources. Ifthemodelbeing 
simulated by the Xecutor has been designed to be a production 
software system, then the same FMaps and TMaps can be RAM 
forproduction. TheXecutorcanbeusedto analyzeprocessessuch 
as thoseinabusiness (en~emodel),manufacturing~software 
development environment (process model) as well as detailed 
algorithms (e.g., searching for parallelism). Because a system is 
defined from the very beginning to support its own run-time 
performance analysis, the Xecutor is able to perform many power- 
ful functions for the systems engineer, 

The Baseliner provides version control and base lining for all 
RMaps, FMaps, TMaps and user defined reusables, including 
defined structures. The Build Manager's primary role is to manage 
all entities which are used in the construction of an executable. 

The tool suiteenvironmentprovides anew set of alternatives for 
disciplines associated with the traditional development process. 
Take for example, reverse engineering. Redevelopment is a more 
viable option, since a system can be developed with higherreliabd- 
ity and productivity than before. Another alternative is to develop 
mainportionsofasystem withthisapproachbutinterfacetoexisting 
legacy libraries at the core primitive level. In the future, however, 
for those systems originally developed with the tool suite, reverse 
engineering becomes a m a w  of configuring and/or selecting the 
appropriate RAT configuration and then RATting to the new envi- 
ronment. In such a way the tool suite takes advantage of the fact that 
a system is defmed from the very beginning to inherently maximize 
the potential for its own automation. 

4: Results 
Many systems have been designed and developed with this 

paradigm, including those which reside within manufacturing, 
aerospace, software tool development [4], data base management 
[5] ,  transaction processing, process control, simulation [6] and 
domain analysis environments [7] . One of these systems is the 001 
tool suite, itself [4]. Approximately 800,000 lines of C code were 
automatically generated for each of 4 platforms by the tool suite to 
aeate itself. Over 7 million lines of code have been generated by 
the tool suite to generate its 3 major versions on these platfom. 
Contained within the tool suite are many kinds of tools (applica- 
tions) that havebeen automatically generated as integrated systems, 
including database management, communications, client server, 
graphics, software development tools, and scientific systems. They 
are inherently integrated as part of the same system. 

Recently, the tool suite was part of a National Test Bed experi- 
ment [81. The same problem was provided to each of three contrac- 
torbendor teams. The application was real time, distributed, multi- 
user, client server, and was required to be defmed and developed 
under government 2167A guidelines. All teams completed the 
definitionof preliminary requirements, two teams continued an to 
complete detailed design and one team, the 001 team, continued on 
to automatically generate complete and fully production ready 
code; this code (both C and Ada were generated from the same 
defintions) was running in both languages at the completion of the 
experiment. We have analyzed our results on an ongoing basis in 
order to understand more fully the impact that properties of a 
system's definition have on the productivity in its development. 
Productivity was analyzed with several systems. Compared to a 
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traditional C development where each developer produces 10 lines 
of code a day, the productivity of 001 developed systems varied 
from 10 to 1 to 100 to 1. (In the eighties, 10 lines of code aday per 
person was the g o v m e n t  expected output, Now it is more likely 
to be 2 to 5 lines a day). Unlike with traditional systems, the larger 
a system, the higher the productivity. This is in large part because 
of the high degree of reuse on large systems. 

5: The next step 
The tool suite has evolved over years based upon user feedback 

and a continuing direction of capitaliig more on advanced 
capabilitia of development before the fact. Datafacer and DFACE 
areexamples of newer tools to bemade recently available to external 
users. This was after the developem of the tool suite used them for 
several months to develop themost recentversions of the tool suite. 
ManagNx), an even newer capability, is going through a similar 
evolution with the developers of the tool suite, 

New components to be added to the tool suite environment are 
the generic Anti-RAT and the architecture independent operating 
system (AIOS) [9]. With the anti-RAT legacy code and legacy 
defintions can be reverse engineered to maps and “Maps and 
become a development before the fact system before proceeding 
through the RAT process to generate (regenerate) the target system 
in the language and architecture of choice. The amount of user 
interaction after the FMaps and maps have been generated will 
depend on how formal the legacy code was in the first place and on 
the degree to which the user would like to change or raise the level 
of his specification. The tool suite currently has an instance of the 
Anti-RATin that it can generate FMaps and “laps from equations. 
The user has the ability to attach equations to the bottom nodes of 
FMapsmakinguseofthiscapability. Uponcomparingtheanti-RAT 
reverse engineering approach with the reverse engineering a p  
proaches discussed above there are advantages anddisadvantages to 
each one depending on the requirements of the user. 

The AIOS will have theintelligence to understand the semantics 
of functional, resource and resource allocation architectures since 
all of these architectures can be defined in terms of maps  and 
“Maps. It will make use of the information in their definitions 
(including the matching of indepen&ncies and dependencies b e  
tween architectures) to automatically determine sets of possible 
effective matches between functional and ~ ~ S O K W  architectures. 
TheDistributedXecutor, amoduleof theAIOS, will provide forreal 
time distributed object management capabilities where the user’s 
application will be fully transparent to client server programming 
techniques and communication protocols. 

6: Summary 
As was shown above, collective experience c o n f i i  that qual- 

ity and productivity increase with the incmed use of developvnent 
before the facf propertieS. A major factor is the inherent reuse in 
these systems culminating in ultimate reuse which is automation, 
itself. Effective reuse is a preventative concept. For successful 
reuse, a system has to be worth reusing and reused for each user 
requiringfunctionalityequivalentto it. Thismeansstartingfromthe 
beginning of a life cycle, not at the end which is typically the case 
with traditional methods; then asystem is reused for each new phase 
of development. No matter what kind, every ten reuses saves ten 
unnecessary developments. 

Theparadigmshift occurs whenadesignerrealizes thatmany of 
the things he used before are no longer needed. Techniques for 
reconciling multiple incompatible techniques and bridging the gap 
fiomonephaseof thelifecycle to anotherbecomeobsolete. Testing 
procedures and after the fact tools for finding the majority of m m  
areno longerneededbecause theseerrom no longer exist. The same 
is me for the majority of tools developed to support programming 
as a manual process. In the end, it is the combination of the 
technology and the process that executes that technology that forms 
the foundation of successful software. Software is so ingrained in 
our society that its success or failure will change dramatically the 
way businesses and governments are operated as well as their 
overall success. It is for this reason that the decisions made today 
relating to systems engineering and softwaredevelopment will have 
such far reaching effeck. 

It is within our mistakes that the answers for success often exist. 
The first step is to recognize the root problems. They can then be 
understood in t e m  of how to prevent them in the future. This is 
followed by the derivation of practical solutions. The process is then 
repeated by looking for problem areas in tem of the new solution 
environment. In contrast to the just-in-time philosophy, thepreven- 
tative philosophy is to solve a given problem such as findig or 
preventing errors as soon as possible (ASAP). Finding an error 
statically is an earlier process than finding it dynamically. Prevent- 
ing it by the very way a system is defined is even earlier. Not having 
to define (and build) it at all is earlier yet. The answer continues to 
be in the results. 
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